8 research outputs found

    Spectral and electroluminescent properties of coordination compounds of terbium (III) with ibuprofen (in solid form, chloroform solutions, and polyvinylcarbazole films)

    Get PDF
    Spectral properties of terbium (III) complexes with composition of TbL3DL, where L is an anion of d,l-2-(4-isobutylphenyl)propanoic acid (ibuprofen) and DL is 2,2′-dipyridyl (Dipy), 1,10-phenanthroline (Phen), or triphenylphosphine oxide (TPPO), have been studied in a solid form, chloroform solutions, and polyvinylcarbazole (PVC) films. It has been demonstrated that, in PVC films, occupation of the emitting level of terbium (III) involves the participation of polymer. The emission decay lifetimes of terbium in the chloroform solutions and PVC films have been measured. The possibility of the appearance of electroluminescence of complexes in PVC films has been studied

    Anionic lanthanide complexes with 3-methyl-1-phenyl-4-formylpyrazole-5-one and hydroxonium as counter ion

    Get PDF
    AbstractA series of [H3O]+[LnL4]−·nH2O complexes (n=1–3, Ln=Nd, (1), Sm (2), Eu (3), Tb (4); HL=3-methyl-1-phenyl-4-formylpyrazole-5-one) were synthesized and characterized. The structures of the SmIII and EuIII complexes were investigated by X-ray diffraction. The isostructutal crystalls 2 and 3 consist the tetrakis [LnL4]− anions which are linked by H-bonding with the hydroxonium counter-ion and water molecules. The lanthanide ion is situated in the center of distorted tetragonal antiprism formed by eight oxygen atoms of 4-formyl-5-hydroxypyrazolonate anions. The TbIII and SmIII complexes show strong luminescence in solid state, whereas the EuIII and NdIII complexes show low luminescence activity

    A role of copper(II) ions in the enhancement of visible and near-infrared lanthanide(III) luminescence

    No full text
    International audienceMost of the existing optical methods for CuII detection rely on a “turn-off” approach using visible lanthanide(III) luminescence. In this work we present an innovative molecular systems where the podands bis(2-hydrazinocarbonylphenyl) ethers of ethylene glycol (L1) and diethylene glycol (L2) have been designed, synthesised and tested with an ultimate goal to create a "turn-on" lanthanide(III)-based molecular probe for the specific detection of CuII ions based on both visible (TbIII, EuIII) and near-infrared (NdIII, YbIII) emission. Quantum yields of the characteristic LnIII emission signals increases by at least two-orders of magnitude upon addition of CuII into water/acetonitrile (9/1) solutions of LnL (L=L1, L2) complexes. A detailed investigation of ligand-centred photophysical properties of water/acetonitrile (9/1) solutions of CuL, GdL and GdCuL complexes revealed that the presence of CuII ions does not significantly affect the energy positions of the singlet (32,260 cm−1) and triplet (25,640–25,970 cm−1) states, but partially or fully eliminates the singlet state quenching through an electron transfer mechanism. This effect increases the probability of intersystem crossing leading to enhanced triplet-to-singlet emission ratio and to longer triplet state lifetimes. The redox activity of hydrazine moieties and their ability to reduce CuII to CuI has been indicated by a qualitative assay with neocuproine. Finally, the probe demonstrates a good selectivity towards CuII over other transition metal ions: the addition of divalent ZnII, CdII, PdII, NiII, CoII or trivalent FeIII, GaIII, InIII ion salts into solutions of TbL either does not affect emission intensity or increases it to a maximum of 2–3 times, while, under similar experimental conditions, the presence of CuII results in a 20- to 30-times lanthanide luminescence enhancement. This new strategy results in a versatile and selective optical platform for the design of efficient “turn-on” sensors for CuII ions based on visible and near-infrared LnIII luminescence

    Spectral and electroluminescent properties of coordination compounds of terbium (III) with ibuprofen (in solid form, chloroform solutions, and polyvinylcarbazole films)

    No full text
    Spectral properties of terbium (III) complexes with composition of TbL3DL, where L is an anion of d,l-2-(4-isobutylphenyl)propanoic acid (ibuprofen) and DL is 2,2′-dipyridyl (Dipy), 1,10-phenanthroline (Phen), or triphenylphosphine oxide (TPPO), have been studied in a solid form, chloroform solutions, and polyvinylcarbazole (PVC) films. It has been demonstrated that, in PVC films, occupation of the emitting level of terbium (III) involves the participation of polymer. The emission decay lifetimes of terbium in the chloroform solutions and PVC films have been measured. The possibility of the appearance of electroluminescence of complexes in PVC films has been studied

    Spectral and electroluminescent properties of binuclear zinc complexes with halogen-substituted derivatives of 1, 2, 4-triazole

    No full text
    Spectral properties of binuclear zinc complexes in chloroform solutions and polyvinylcarbazole (PVC) films are investigated. It is demonstrated that incorporation of a halogen atom (chlorine or bromine) in a ligand benzene ring leads to a small shift of the spectrum toward the red region and a reduction of the fluorescence quantum yield. The fluorescence and phosphorescence spectra at T = 77K are investigated. The fluorescence undergoes a blue shift of about 30 nm and multiply increases in the intensity, and the phosphorescence is observed at 540–580 nm. The phosphorescence lifetime is estimated. The electroluminescent properties of metal complexes in structures with thermal vacuum spin coating of complexes and in PVC films are investigated

    Spectral and electroluminescent properties of binuclear zinc complexes with halogen-substituted derivatives of 1, 2, 4-triazole

    No full text
    Spectral properties of binuclear zinc complexes in chloroform solutions and polyvinylcarbazole (PVC) films are investigated. It is demonstrated that incorporation of a halogen atom (chlorine or bromine) in a ligand benzene ring leads to a small shift of the spectrum toward the red region and a reduction of the fluorescence quantum yield. The fluorescence and phosphorescence spectra at T = 77K are investigated. The fluorescence undergoes a blue shift of about 30 nm and multiply increases in the intensity, and the phosphorescence is observed at 540–580 nm. The phosphorescence lifetime is estimated. The electroluminescent properties of metal complexes in structures with thermal vacuum spin coating of complexes and in PVC films are investigated
    corecore