25 research outputs found

    Pedological Characterisation of Sites Along a Transect from a Primary Cadmium/ Lead/ Zinc Smelting Works

    No full text
    A pedological characterisation of seven sites along a transect from a smelter at Avonmouth, UK, was undertaken. Site locations comprised a mixture of both grassland (5 sites) and oak tree dominated (2 sites) areas. Geographically, sites were either low lying or on adjacent elevated ground. Across the transect, a severe gradient of metal concentrations was found with highest values for organic soil horizons from close to the factory. Comparisons with quality standards indicate that these metal levels are likely to be a major ecological stressor. In addition to the strong metal gradient, a number of other between site differences were also observed. These were firstly water regime, which at the low lying sites close to the smelter showed influence by both, groundwater and stagnant water, while at more distant sites indicated susceptibility to stagnant water only, and secondly soil pH, which showed large between site variations, although no consistent trend along the transect. Humus forms at sites more than 1.5 km from the smelter were characteristic for the soil conditions and land-use present, while those at sites within 1.5 kin, showed disturbed profiles. Indeed, the humus types present at these locations suggest that the activity of soil invertebrates may be inhibited. This is almost certainly due primarily to the high concentrations of metals that were present in mineral soil and organic horizons at the sites. However, the potential influences of water regime and pH could also be relevant factors influencing the results of any further studies conducted at these study sites

    Conservation physiology of marine fishes: state of the art and prospects for policy

    Get PDF
    The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists

    Effects of patch quality and network structure on patch occupancy dynamics of a yellow-bellied marmot metapopulation

    Full text link
    1. The presence/absence of a species at a particular site is the simplest form of data that can be collected during ecological field studies. We used 13 years (1990-2002) of survey data to parameterize a stochastic patch occupancy model for a metapopulation of the yellow-bellied marmot in Colorado, and investigated the significance of particular patches and the influence of site quality, network characteristics and regional stochasticity on the metapopulation persistence. 2. Persistence of the yellow-bellied marmot metapopulation was strongly dependent on the high quality colony sites, and persistence probability was highly sensitive to small changes in the quality of these sites. 3. A relatively small number of colony sites was ultimately responsible for the regional persistence. However, lower quality satellite sites also made a significant contribution to long-term metapopulation persistence, especially when regional stochasticity was high. 4. The northern network of the marmot metapopulation was more stable compared to the southern network, and the persistence of the southern network depended heavily on the northern network. 5. Although complex models of metapopulation dynamics may provide a more accurate description of metapopulation dynamics, such models are data-intensive. Our study, one of the very few applications of stochastic patch occupancy models to a mammalian species, suggests that stochastic patch occupancy models can provide important insights into metapopulation dynamics using data that are easy to collect
    corecore