45 research outputs found

    Hydraulic Analysis of Micro-irrigation Laterals: a New Approach

    Get PDF
    The current approach in hydraulic analysis of micro-irrigation laterals has been derived from sprinkler irrigation design where pipe sizes and flow rates are large. The approach assumes uniform emitter discharge and emitter barb head loss, or uses empirical formula which are not applicable to micro-irrigation systems due to errors caused by ignoring the effect of water temperature. The formula do not fit the actual head loss in small diameter polyethylene pipes for the range of Reynolds number normally encountered in micro-irrigation and should not be used for accurate analysis. The Darcy-Weisbach equation with a combined friction factor for the smooth pipe and local loss due to emitter connection used in a step by step evaluation of head loss gives more accurate results than the current method. The new approach also considers emitter manufacturing variation, and the effect of temperature changes on emitter discharge and lateral flow rates. This approach makes the use of equivalent pipe length for emitter connection head loss and a factor for dividing flow unnecessary

    Impact of Altered Gastrocnemius Morphometrics and Fascicle Behavior on Walking Patterns in Children With Spastic Cerebral Palsy

    Get PDF
    Spastic cerebral palsy (SCP) affects neural control, deteriorates muscle morphometrics, and may progressively impair functional walking ability. Upon passive testing, gastrocnemius medialis (GM) muscle bellies or fascicles are typically shorter, thinner, and less extensible. Relationships between muscle and gait parameters might help to understand gait pathology and pathogenesis of spastic muscles. The current aim was to link resting and dynamic GM morphometrics and contractile fascicle behavior (both excursion and velocity) during walking to determinants of gait. We explored the associations between gait variables and ultrasonography of the GM muscle belly captured during rest and during gait in children with SCP [n = 15, gross motor function classification system (GMFCS) levels I and II, age: 7–16 years] and age-matched healthy peers (n = 17). The SCP children’s plantar flexors were 27% weaker. They walked 12% slower with more knee flexion produced 42% less peak ankle push-off power (all p < 0.05) and 7/15 landed on their forefoot. During the stance phase, fascicles in SCP on average operated on 9% shorter length (normalized to rest length) and displayed less and slower fascicle shortening (37 and 30.6%, respectively) during push-off (all p ≤ 0.024). Correlation analyses in SCP patients revealed that (1) longer-resting fascicles and thicker muscle bellies are positively correlated with walking speed and negatively to knee flexion (r = 0.60–0.69, p < 0.0127) but not to better ankle kinematics; (2) reduced muscle strength was associated with the extent of eccentric fascicle excursion (r = −0.57, p = 0.015); and (3) a shorter operating length of the fascicles was correlated with push-off power (r = −0.58, p = 0.013). Only in controls, a correlation (r = 0.61, p = 0.0054) between slower fascicle shortening velocity and push-off power was found. Our results indicate that a thicker gastrocnemius muscle belly and longer gastrocnemius muscle fascicles may be reasonable morphometric properties that should be targeted in interventions for individuals with SCP, since GM muscle atrophy may be related to decreases in walking speed and undesired knee flexion during gait. Furthermore, children with SCP and weaker gastrocnemius muscle may be more susceptible to chronic eccentric muscle overloading. The relationship between shorter operating length of the fascicles and push-off power may further support the idea of a compensation mechanism for the longer sarcomeres found in children with SCP. Nevertheless, more studies are needed to support our explorative findings.Peer Reviewe

    Muscle and tendon morphology alterations in children and adolescents with mild forms of spastic cerebral palsy

    No full text
    Abstract Background Early detection of changes at the muscular level before a contracture develops is important to gain knowledge about the development of deformities in individuals with spasticity. However, little information is available about muscle morphology in children with spastic diplegic cerebral palsy (CP) without contracture or equinus gait. Therefore, the aim of this study was to compare the gastrocnemius medialis (GM) and Achilles tendon architecture of children and adolescents with spastic CP without contracture or equinus gait to that of typically developing (TD) children. Methods Two-dimensional ultrasonography was used to assess the morphological properties of the GM muscle and Achilles tendon in 10 children with spastic diplegic CP (Gross Motor Function Classification System level I–II) and 12 TD children (mean age 12.0 (2.8) and 11.3 (2.5) years, respectively). The children with CP were not restricted in the performance of daily tasks, and therefore had a high functional capacity. Mean muscle and tendon parameters were statistically compared (independent t-tests or Mann-Whitney U-tests). Results When normalized to lower leg length, muscle-tendon unit length and GM muscle belly length were found to be significantly shorter (p < 0.05, effect size (ES) = 1.00 and 0.98, respectively) in the children with spastic CP. Furthermore, there was a tendency for increased Achilles tendon length when expressed as a percentage of muscle-tendon unit length (p = 0.08, ES = − 0.80) in the individuals with CP. This group also showed shorter muscle fascicles (3.4 cm vs. 4.4 cm, p < 0.01, ES = 1.12) and increased fascicle pennation angle (21.9° vs. 18.1°, p < 0.01, ES = − 1.36, respectively). However, muscle thickness and Achilles tendon cross-sectional area did not differ between groups. Resting ankle joint angle was significantly more plantar flexed (− 26.2° vs. − 20.8°, p < 0.05, ES = 1.06) in the children with CP. Conclusions Morphological alterations of the plantar flexor muscle-tendon unit are also present in children and adolescents with mild forms of spastic CP. These alterations may contribute to functional deficits such as muscle weakness, and therefore have to be considered in the clinical decision-making process, as well as in the selection of therapeutic interventions

    Analyza evokovanych potencialu pomoci expertniho systemu.

    No full text
    Available from STL Prague, CZ / NTK - National Technical LibrarySIGLECZCzech Republi

    Correction to: Muscle and tendon morphology alterations in children and adolescents with mild forms of spastic cerebral palsy

    No full text
    Following publication of the original article [1], the author requested for an acknowledgement to retrospectively be added to the ‘Acknowledgements’ section of the article [1]

    Overview of foot deformity management in children with cerebral palsy

    No full text
    corecore