29 research outputs found

    Assessing auditory evoked potentials of wild harbor porpoises (Phocoena phocoena)

    Get PDF
    © 2016 Acoustical Society of America. Testing the hearing abilities of marine mammals under water is a challenging task. Sample sizes are usually low, thus limiting the ability to generalize findings of susceptibility towards noise influences. A method to measure harbor porpoise hearing thresholds in situ in outdoor conditions using auditory steady state responses of the brainstem was developed and tested. The method was used on 15 live-stranded animals from the North Sea during rehabilitation, shortly before release into the wild, and on 12 wild animals incidentally caught in pound nets in Denmark (inner Danish waters). Results indicated that although the variability between individuals is wide, the shape of the hearing curve is generally similar to previously published results from behavioral trials. Using 10-kHz frequency intervals between 10 and 160 kHz, best hearing was found between 120 and 130 kHz. Additional testing using one-third octave frequency intervals (from 16 to 160 kHz) allowed for a much faster hearing assessment, but eliminated the fine scale threshold characteristics. For further investigations, the method will be used to better understand the factors influencing sensitivity differences across individuals and to establish population-level parameters describing hearing abilities of harbor porpoises

    Are European Blue Economy ambitions in conflict with European environmental visions?

    Get PDF
    We report the outcomes of a comprehensive study of the potential consequences of the implementation of the EU Maritime Spatial Planning Directive (MSPD) in Danish waters. The analyses are anchored in a framework developed in support of data-driven Ecosystem-Based Maritime Spatial Planning. The data for the models include not only human stressors but also information on the distribution of ecosystem components ranging from planktonic communities over benthic communities to fish, seabirds and marine mammals. We have established a baseline, based on state-of-the-art data sets, with respect to combined effects upon ecosystem components. Future scenarios for the developments in human stressors were estimated for 2030 and 2050 based on information on existing policies, strategies and plans and were compared to the baseline. In addition, we developed a scenario for implementation of the Marine Strategy Framework Directive (MSFD), i.e. working towards meeting the objectives of Good Environmental Status. Our results indicate that (1) combined human stressors will possibly increase in 2030 and 2050 compared to the baseline, (2) increased combined human stressors are likely to lead to a worsening of the environmental and ecological status sensu the Marine Strategy Framework Directive and the Water Framework Directive (WFD), and (3) the MSPD implementation process appears to conflict with the MSFD and WFD objectives. Accordingly, we are sceptical of claims of an untapped potential for Blue Growth in Danish marine waters.publishedVersio

    Don’t forget the porpoise: acoustic monitoring reveals fine scale temporal variation between bottlenose dolphin and harbour porpoise in Cardigan Bay SAC

    Get PDF
    Populations of bottlenose dolphin and harbour porpoise inhabit Cardigan Bay, which was designated a Special Area of Conservation (SAC), with bottlenose dolphin listed as a primary feature for its conservation status. Understanding the abundance, distribution and habitat use of species is fundamental for conservation and the implementation of management. Bottlenose dolphin and harbour porpoise usage of feeding sites within Cardigan Bay SAC was examined using passive acoustic monitoring. Acoustic detections recorded with calibrated T-PODs (acoustic data loggers) indicated harbour porpoise to be present year round and in greater relative abundance than bottlenose dolphin. Fine-scale temporal partitioning between the species occurred at three levels: (1) seasonal differences, consistent between years, with porpoise detections peaking in winter months and dolphin detections in summer months; (2) diel variation, consistent across sites, seasons and years, with porpoise detections highest at night and dolphin detections highest shortly after sunrise; and (3) tidal variation was observed with peak dolphin detections occurring during ebb at the middle of the tidal cycle and before low tide, whereas harbour porpoise detections were highest at slack water, during and after high water with a secondary peak recorded during and after low water. General Additive Models (GAMs) were applied to better understand the effects of each covariate. The reported abundance and distribution of the two species, along with the temporal variation observed, have implications for the design and management of protected areas. Currently, in the UK, no SACs have been formally designated for harbour porpoise while three exist for bottlenose dolphins. Here, we demonstrate a need for increased protection and species-specific mitigation measures for harbour porpoise

    Distribution maps of cetacean and seabird populations in the North‐East Atlantic

    Get PDF
    1. Distribution maps of cetaceans and seabirds at basin and monthly scales are needed for conservation and marine management. These are usually created from standardized and systematic aerial and vessel surveys, with recorded animal den- sities interpolated across study areas. However, distribution maps at basin and monthly scales have previously not been possible because individual surveys have restricted spatial and temporal coverage. 2. This study develops an alternative approach consisting of: (a) collating diverse survey data to maximize spatial and temporal coverage, (b) using detection func- tions to estimate variation in the surface area covered (km2) among these surveys, standardizing measurements of effort and animal densities, and (c) developing species distribution models (SDM) that overcome issues with heterogeneous and uneven coverage. 3. 2.68 million km of survey data in the North-East Atlantic between 1980 and 2018 were collated and standardized. SDM using Generalized Linear Models and General Estimating Equations in a hurdle approach were developed. Distribution maps were then created for 12 cetacean and 12 seabird species at 10 km and monthly resolution. Qualitative and quantitative assessment indicated good model performance. 4. Synthesis and applications. This study provides the largest ever collation and standardization of diverse survey data for cetaceans and seabirds, and the most comprehensive distribution maps of these taxa in the North-East Atlantic. These distribution maps have numerous applications including the identification of im- portant areas needing protection, and the quantification of overlap between vul- nerable species and anthropogenic activities. This study demonstrates how the analysis of existing and diverse survey data can meet conservation and marine management needs.Versión del editor4,7

    Working Group on Marine Mammal Ecology (WGMME)

    Get PDF
    159 pages.-- This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0)The Working Group on Marine Mammal Ecology met in 2022 to address five terms of reference. Under the first of these, ToR A, new information on cetacean and seal population abundance, distribution, population/stock structure, was reviewed, including information on vagrant ma-rine mammal species. This was done to ensure the recording of possible range changes in marine mammal species in the future. For cetaceans, an update is given for the different species, providing for a latest estimate for all species studies. In this report, particular attention is given to the updating of information from Canadian and US waters, and together with those countries, latest estimates for cetacean species are provided. For seals, latest monitoring results are given for harbour, grey and Baltic ringed seals. In addition, where possible, local long-term trends are illustrated for those species, based on earlier WGMME efforts to assemble these data into the WGMME seal database. For both spe-cies’ groups, a first account of vagrant species is providedN
    corecore