576 research outputs found

    The preparation, identification and properties of chlorophyll derivatives

    Get PDF
    In the investigation of 10-hydroxy chlorophylls a and b novel techniques included modification of chromatography and the use of fully-deuterated compounds isolated from fully-deuterated autotropic algae to determine the molecular structure of the chlorophylls

    Enhancement of Electrical Conduction and Phonon Scattering in Ga2O3(ZnO)9-In2O3(ZnO)9 Compounds by Modification of Interfaces at the Nanoscale

    Get PDF
    The Ga2O3(ZnO)9 and In2O3(ZnO)9 homologous phases have attracted attention as thermoelectric (TE) oxides due to their layered structures. Ga2O3(ZnO)9 exhibits low thermal conductivity, while In2O3(ZnO)9 possesses higher electrical conductivity. The TE properties of the solid solution of Ga2O3(ZnO)9-In2O3(ZnO)9 were explored and correlated with changes in the crystal structure. High-quality (1−x)Ga2O3(ZnO)9-(ZnO)9 (x = 0.0 to 1.0) ceramics were prepared by the solid-state route using B2O3 and Nd2O3 as additives. The crystal structures were analysed by x-ray diffraction, high-resolution transmission electron microscopy and atomic resolution scanning transmission electron microscopy–high-angle annular dark field imaging–energy dispersive x-ray spectroscopy (STEM–HAADF–EDS) techniques. A layered superstructure with compositional modulations was observed in all samples in the (1−x)Ga2O3(ZnO)9-xIn2O3(ZnO)9 system. All the ceramics exhibited nanoscale structural features identified as Ga- and In-rich inversion boundaries (IBs). Substitution of 20 mol.% In (x = 0.2) in the Ga2O3(ZnO)9 compounds generated basal and pyramidal indium IBs typically found in the In2O3(ZnO)m system. The (Ga0.8In0.2)2O3(ZnO)9 compound does not exhibit the structural features of the Cmcm Ga2O3(ZnO)9 compound, which is formed by a stacking of Ga-rich IBs along the pyramidal plane of the wurtzite ZnO, but features that resemble the crystal structure exhibited by the R3¯¯¯m In2O3(ZnO)m with basal and pyramidal indium IBs. The structural changes led to improved TE performance. For example, (Ga0.8In0.2)2O3(ZnO)9 showed a low thermal conductivity of 2 W/m K and a high power factor of 150 μW/m K2 giving a figure of merit (ZT) of 0.07 at 900 K. This is the highest ZT for Ga2O3(ZnO)9-based homologous compounds and is comparable with the highest ZT reported for In2O3(ZnO)9 homologous compounds

    Hyperinsulinemia in African-American Adolescents Compared With Their American White Peers Despite Similar Insulin Sensitivity: A reflection of upregulated β-cell function?

    Get PDF
    OBJECTIVE—African-American (AA) children are hyperinsulinemic and insulin resistant compared with American white (AW) children. Previously, we demonstrated that insulin secretion relative to insulin sensitivity was ∼75% higher in AA compared with AW children, suggesting that hyperinsulinemia in AA children is not merely a compensatory response to lower insulin sensitivity. The aim of the present investigation was to assess whether glucose-stimulated insulin response is higher in AA versus AW adolescents who have comparable in vivo insulin sensitivity

    Utilising unit-cell twinning operators to reduce lattice thermal conductivity in modular structures: Structure and thermoelectric properties of Ga₂O₃(ZnO)₉

    Get PDF
    The Ga2O3(ZnO)m family of homologous compounds have been identified as potential thermoelectric materials, but properties are often limited due to low densification. By use of B2O3 as an effective liquid phase sintering aid, high density, high quality ceramic samples of Ga2O3(ZnO)9 have been synthesised. The atomic structure and local chemical composition of Ga2O3(ZnO)9 have been determined by means of high resolution X-ray diffraction and atomic resolution STEM-HAADF, EDS and EELS measurements. X-ray analysis showed that the compound crystalizes in the Cmcm orthorhombic symmetry. Atomically resolved HAADF-STEM images unambiguously showed the presence of nano-sized, wedge-shaped twin boundaries, parallel to the b-axis. These nano-scale structural features were chemically investigated, for the first time, revealing the exact distributions of Zn and Ga; it was found that Ga ions occupy sites at the junction of twin boundaries and inversion boundaries. HAADF-EDS analysis showed that the calcination step has a significant impact on crystal structure homogeneity. By use of a sintering aid and optimization of processing parameters the ceramics achieved a low thermal conductivity of 1.5–2.2 W/m.K (for the temperature range 300–900 K), a power factor of 40–90 μW/K.m2, leading to a ZT of 0.06 at 900 K. The work shows a route to exploit nanoscale interface features to reduce the thermal conductivity and thereby enhance the thermoelectric figure of merit in complex thermoelectric materials

    Mass and width of sigma(750) scalar meson from measurements of piN->pi(-)pi(+)N on polarized targets

    Full text link
    The measurements of reactions π−p↑→π−π+n\pi^- p_\uparrow \to \pi^- \pi^+ n at 17.2 GeV/c and π+n↑→π+π−p\pi^+ n_\uparrow \to \pi^+ \pi^- p at 5.98 and 11.85 GeV/c made at CERN with polarized targets provide a model-independent and solution-independent evidence for a narrow scalar state sigma(750). The original chi^2 minimization method and the recent Monte Carlo method for amplitude analysis of data at 17.2 GeV/c are in excellent agreement. Both methods find that the mass distribution of the measured amplitude ∣S‾∣2Σ|\overline S |^2\Sigma with recoil transversity ``up'' resonates near 750 MeV while the amplitude ∣S∣2Σ|S|^2\Sigma with recoil transversity ``down'' is large and nonresonating. The amplitude ∣S∣2Σ|S|^2\Sigma contributes as a strong background to S-wave intensity I_S = (|S|^2 + |\overline S |^2)\Sigmaanddistortsthedeterminationsof and distorts the determinations of \sigmaresonanceparametersfrom resonance parameters from I_S.ToavoidthisproblemweperformaseriesofBreit−Wignerfitsdirectlytothemeasureddistribution. To avoid this problem we perform a series of Breit-Wigner fits directly to the measured distribution |\overline S |^2\Sigma.Theinclusionofvariousbackgroundscausesthewidthofsigma(750)tobecomeverynarrow.Ourbestfitwith. The inclusion of various backgrounds causes the width of sigma(750) to become very narrow. Our best fit with t−averagedcoherentbackgroundyields-averaged coherent background yields m_\sigma = 753 \pm 19MeVand MeV and \Gamma_\sigma = 108 \pm 53MeV.ThesevaluesareinexcellentagreementwithEllis−Laniktheoremforthewidthofscalargluonium.Thegluoniuminterpretationof MeV. These values are in excellent agreement with Ellis-Lanik theorem for the width of scalar gluonium. The gluonium interpretation of \sigma(750)isalsosupportedbytheabsenceof is also supported by the absence of \sigma(750)inreactions in reactions \gamma\gamma \to \pi\pi.Wealsoshowhowdataonpolarizedtargetinvalidateessentialassumptionsofpastdeterminationsof. We also show how data on polarized target invalidate essential assumptions of past determinations of \pi\pi$ phase shifts .Comment: 77 page

    Fast Photon Detection for Particle Identification with COMPASS RICH-1

    Get PDF
    Particle identification at high rates is an important challenge for many current and future high-energy physics experiments. The upgrade of the COMPASS RICH-1 detector requires a new technique for Cherenkov photon detection at count rates of several 10610^6 per channel in the central detector region, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors in the central region have been replaced with the detection system described in this paper. In the peripheral regions, the existing multi-wire proportional chambers with CsI photocathode are now read out via a new system employing APV pre-amplifiers and flash ADC chips. The new detection system consists of multi-anode photomultiplier tubes (MAPMT) and fast read-out electronics based on the MAD4 discriminator and the F1-TDC chip. The RICH-1 is in operation in its upgraded version for the 2006 CERN SPS run. We present the photon detection design, constructive aspects and the first Cherenkov light in the detector.Comment: Proceedings of the Imaging 2006 conference, Stockholm, Sweden, 27-30 June 2006, 5 pages, 6 figures, to appear in NIM A; corrected typo in caption of Fig.

    Fast photon detection for the COMPASS RICH detector

    Get PDF
    The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a wide momentum range. For the data taking in 2006, the COMPASS RICH has been upgraded in the central photon detection area (25% of the surface) with a new technology to detect Cherenkov photons at very high count rates of several 10^6 per second and channel and a new dead-time free read-out system, which allows trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of 576 visible and ultra-violet sensitive multi-anode photomultipliers with 16 channels each. The upgraded detector showed an excellent performance during the 2006 data taking.Comment: Proceeding of the IPRD06 conference (Siena, Okt. 06

    Large Nc and Chiral Dynamics

    Get PDF
    We study the dependence on the number of colors of the leading pi pi scattering amplitude in chiral dynamics. We demonstrate the existence of a critical number of colors for and above which the low energy pi pi scattering amplitude computed from the simple sum of the current algebra and vector meson terms is crossing symmetric and unitary at leading order in a truncated and regularized 1/Nc expansion. The critical number of colors turns out to be Nc=6 and is insensitive to the explicit breaking of chiral symmetry. Below this critical value, an additional state is needed to enforce the unitarity bound; it is a broad one, most likely of "four quark" nature.Comment: RevTeX4, 6 fig., 5 page

    The Fast Read-out System for the MAPMTs of COMPASS RICH-1

    Full text link
    A fast readout system for the upgrade of the COMPASS RICH detector has been developed and successfully used for data taking in 2006 and 2007. The new readout system for the multi-anode PMTs in the central part of the photon detector of the RICH is based on the high-sensitivity MAD4 preamplifier-discriminator and the dead-time free F1-TDC chip characterized by high-resolution. The readout electronics has been designed taking into account the high photon flux in the central part of the detector and the requirement to run at high trigger rates of up to 100 kHz with negligible dead-time. The system is designed as a very compact setup and is mounted directly behind the multi-anode photomultipliers. The data are digitized on the frontend boards and transferred via optical links to the readout system. The read-out electronics system is described in detail together with its measured performances.Comment: Proceeding of RICH2007 Conference, Trieste, Oct. 2007. v2: minor change
    • …
    corecore