147 research outputs found
Potential of the three-Terminal heterojunction bipolar transistor solar cell for space applications
Multi-Terminal multi-junction solar cells (MJSC) offer higher efficiency potential than series connected (two-Terminal) ones. In addition, for terrestrial applications, the efficiency of multi-Terminal solar cells is less sensitive to solar spectral variations than the two-Terminal series-connected one. In space, generally, cells are always illuminated with AM0 spectrum and no impact is expected from spectral variations. Still, in space, the multi-Terminal approach offers some advantages in comparison with the series-connected architecture approach derived from a higher end of life (EOL) efficiency. In this work we review the potential of multi-Terminal solar cells for achieving extended EOL efficiencies with emphasis in the potential of the three-Terminal heterojunction bipolar transistor solar cell, a novel multi-Terminal MJSC architecture with a simplified structure not requiring, for example, tunnel junctions
Triplet Excitation and Electroluminescence from a Supramolecular Monolayer Embedded in a Boron Nitride Tunnel Barrier
© 2019 American Chemical Society. We show that ordered monolayers of organic molecules stabilized by hydrogen bonding on the surface of exfoliated few-layer hexagonal boron nitride (hBN) flakes may be incorporated into van der Waals heterostructures with integral few-layer graphene contacts forming a molecular/two-dimensional hybrid tunneling diode. Electrons can tunnel through the hBN/molecular barrier under an applied voltage VSD, and we observe molecular electroluminescence from an excited singlet state with an emitted photon energy hν > eVSD, indicating upconversion by energies up to ∼1 eV. We show that tunneling electrons excite embedded molecules into singlet states in a two-step process via an intermediate triplet state through inelastic scattering and also observe direct emission from the triplet state. These heterostructures provide a solid-state device in which spin-triplet states, which cannot be generated by optical transitions, can be controllably excited and provide a new route to investigate the physics, chemistry, and quantum spin-based applications of triplet generation, emission, and molecular photon upconversion
Intravesical rAd-IFNα/Syn3 for Patients With High-Grade, Bacillus Calmette-Guerin-Refractory or Relapsed Non-Muscle-Invasive Bladder Cancer: A Phase II Randomized Study.
Purpose Many patients with high-risk non-muscle-invasive bladder cancer (NMIBC) are either refractory to bacillus Calmette-Guerin (BCG) treatment or may experience disease relapse. We assessed the efficacy and safety of recombinant adenovirus interferon alfa with Syn3 (rAd-IFNα/Syn3), a replication-deficient recombinant adenovirus gene transfer vector, for patients with high-grade (HG) BCG-refractory or relapsed NMIBC. Methods In this open-label, multicenter (n = 13), parallel-arm, phase II study ( ClinicalTrials.gov identifier: NCT01687244), 43 patients with HG BCG-refractory or relapsed NMIBC received intravesical rAd-IFNα/Syn3 (randomly assigned 1:1 to 1 × 10(11) viral particles (vp)/mL or 3 × 10(11) vp/mL). Patients who responded at months 3, 6, and 9 were retreated at months 4, 7, and 10. The primary end point was 12-month HG recurrence-free survival (RFS). All patients who received at least one dose were included in efficacy and safety analyses. Results Forty patients received rAd-IFNα/Syn3 (1 × 10(11) vp/mL, n = 21; 3 × 10(11) vp/mL, n = 19) between November 5, 2012, and April 8, 2015. Fourteen patients (35.0%; 90% CI, 22.6% to 49.2%) remained free of HG recurrence 12 months after initial treatment. Comparable 12-month HG RFS was noted for both doses. Of these 14 patients, two experienced recurrence at 21 and 28 months, respectively, after treatment initiation, and one died as a result of an upper tract tumor at 17 months without a recurrence. rAd-IFNα/Syn3 was well tolerated; no grade four or five adverse events (AEs) occurred, and no patient discontinued treatment because of an adverse event. The most frequently reported drug-related AEs were micturition urgency (n = 16; 40%), dysuria (n = 16; 40%), fatigue (n = 13; 32.5%), pollakiuria (n = 11; 28%), and hematuria and nocturia (n = 10 each; 25%). Conclusion rAd-IFNα/Syn3 was well tolerated. It demonstrated promising efficacy for patients with HG NMIBC after BCG therapy who were unable or unwilling to undergo radical cystectomy
High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures
We exploit the broad-band transparency of graphene and the favorable band line up of graphene with van der Waals InSe crystals to create new functional heterostructures and high-performance photodetectors. The InSe-graphene heterostructure exhibits a high photoresponsivity, which exceeds that for other two-dimensional van der Waals crystals, and a spectral response that extends from the near-infrared to the visible spectrum. The highest photoresponsivity is achieved in device architectures where the InSe and graphene layers are vertically stacked, thus enabling effective extraction of photogenerated carriers from the InSe to the graphene electrodes
Cuaderno abierto para la simulación de células solares de tres terminales de tipo transistor bipolar de heterounion
Los cuadernos abiertos (Open Notebooks), como los que pueden realizarse en el entorno Jupyter, son una herramienta excelente, no solo para documentar los programas que se implementan para realizar tal o cual cálculo, sino también para: a) facilitar la docencia sobre el asunto de que se trate, b) facilitar que terceros verifiquen con facilidad los cálculos realizados, c) posibilitar el cálculo interactivo. En el contexto del proyecto Europeo GRECO, dedicado al desarrollo de la ciencia e innovación responsable (RRI) aplicado al campo de la energía solar fotovoltaica, estamos desarrollando un “Open Notebook” para modelar analíticamente la denominada “célula solar de tres terminales de tipo transistor bipolar de heterounión”. En este trabajo describimos cómo acceder a dicho cuaderno, describimos el modelo utilizado para modelar dicha célula y comentamos algunas de las lecciones aprendidas en relación con su uso y el desarrollo de la ciencia abierta
Ontology Design Patterns for bio-ontologies: a case study on the Cell Cycle Ontology
<p>Abstract</p> <p>Background</p> <p>Bio-ontologies are key elements of knowledge management in bioinformatics. Rich and rigorous bio-ontologies should represent biological knowledge with high fidelity and robustness. The richness in bio-ontologies is a prior condition for diverse and efficient reasoning, and hence querying and hypothesis validation. Rigour allows a more consistent maintenance. Modelling such bio-ontologies is, however, a difficult task for bio-ontologists, because the necessary richness and rigour is difficult to achieve without extensive training.</p> <p>Results</p> <p>Analogous to design patterns in software engineering, Ontology Design Patterns are solutions to typical modelling problems that bio-ontologists can use when building bio-ontologies. They offer a means of creating rich and rigorous bio-ontologies with reduced effort. The concept of Ontology Design Patterns is described and documentation and application methodologies for Ontology Design Patterns are presented. Some real-world use cases of Ontology Design Patterns are provided and tested in the Cell Cycle Ontology. Ontology Design Patterns, including those tested in the Cell Cycle Ontology, can be explored in the Ontology Design Patterns public catalogue that has been created based on the documentation system presented (<url>http://odps.sourceforge.net/</url>).</p> <p>Conclusions</p> <p>Ontology Design Patterns provide a method for rich and rigorous modelling in bio-ontologies. They also offer advantages at different development levels (such as design, implementation and communication) enabling, if used, a more modular, well-founded and richer representation of the biological knowledge. This representation will produce a more efficient knowledge management in the long term.</p
Health-related quality of life after treatment for bladder cancer in England
Background
Little is known about quality of life after bladder cancer treatment. This common cancer is managed using treatments that can affect urinary, sexual and bowel function.
Methods
To understand quality of life and inform future care, the Department of Health (England) surveyed adults surviving bladder cancer 1–5 years after diagnosis. Questions related to disease status, co-existing conditions, generic health (EQ-5D), cancer-generic (Social Difficulties Inventory) and cancer-specific outcomes (Functional Assessment of Cancer Therapy—Bladder).
Results
In total, 673 (54%) patients responded; including 500 (74%) men and 539 (80%) with co-existing conditions. Most respondents received endoscopic treatment (60%), while 92 (14%) and 99 (15%) received radical cystectomy or radiotherapy, respectively. Questionnaire completion rates varied (51–97%). Treatment groups reported ≥1 problem using EQ-5D generic domains (59–74%). Usual activities was the most common concern. Urinary frequency was common after endoscopy (34–37%) and radiotherapy (44–50%). Certain populations were more likely to report generic, cancer-generic and cancer-specific problems; notably those with co-existing long-term conditions and those treated with radiotherapy.
Conclusion
The study demonstrates the importance of assessing patient-reported outcomes in this population. There is a need for larger, more in-depth studies to fully understand the challenges patients with bladder cancer face
Electroluminescence from a phthalocyanine monolayer encapsulated in a van der Waals tunnel diode
Monolayers of free base phthalocyanine (H2Pc) are grown on monolayer and few-layer exfoliated flakes of hexagonal boron nitride (hBN) which are subsequently integrated into a van der Waals tunnel diode. This heterostructure consists of two thin hBN flakes between which the H2Pc monolayer is sandwiched and also incorporates upper and lower few-layer graphene contacts. When a voltage is applied between the contacts, a tunnel current flows and the embedded molecules can be excited resulting in the emission of photons with wavelengths which are close to the peaks observed in photoluminescence. We also observe electroluminescence at voltages where the energy gained by a tunnelling electron is lower than the energy of the emitted photon implying a multi-electron excitation pathway which we attribute to the formation of an intermediate triplet state. Our results provide insights into the differences in excitation and relaxation of molecules in supramolecular monolayers and bulk crystals and we discuss how the alignment of the energy levels of the molecules and contact layers determine the emission process
- …