6 research outputs found

    Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data

    Get PDF
    Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earth's surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earth's surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates

    Coseismic Displacements from the Hector Mine, California, earthquake: Results from survey-mode global positioning system measurements

    No full text
    We describe the collection and processing of Global Positioning System (GPS) data from 77 locations around the Hector Mine earthquake, which we use to estimate coseismic displacements related to this shock. The existence of pre-event GPS data, some collected to monitor postseismic displacements from the 1992 Landers earthquake and some to establish survey control in the meizoseismal area, provided a relatively dense coverage close to the rupture zone. The data available were collected mostly within the 2 years prior to the 1999 earthquake; we reobserved many points within a few days after the shock, and all within 6 months after. We include corrections for interseismic motion to provide the best value possible for coseismic motion caused by this earthquake. The displacements in general display the pattern expected for a strike-slip fault, though a few show significant vertical motion. The maximum horizontal displacement observed was 2 m; one station between fault ruptures showed little horizontal motion, but significant uplift
    corecore