12 research outputs found

    Caries risk assessment in school children using a reduced Cariogram model without saliva tests

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the caries predictive ability of a reduced Cariogram model without salivary tests in schoolchildren.</p> <p>Methods</p> <p>The study group consisted of 392 school children, 10-11 years of age, who volunteered after informed consent. A caries risk assessment was made at baseline with aid of the computer-based Cariogram model and expressed as "the chance of avoiding caries" and the children were divided into five risk groups. The caries increment (ΔDMFS) was extracted from the dental records and bitewing radiographs after 2 years. The reduced Cariogram was processed by omitting the variables "salivary mutans streptococci", "secretion rate" and "buffer capacity" one by one and finally all three. Differences between the total and reduced models were expressed as area under the ROC-curve.</p> <p>Results</p> <p>The baseline caries prevalence in the study population was 40% (mean DMFS 0.87 ± 1.35) and the mean 2-year caries increment was 0.51 ± 1.06. Both Cariogram models displayed a statistically relationship with caries development (p < 0.05); more caries was found among those assessed with high risk compared to those with low risk. The combined sensitivity and specificity decreased after exclusion of the salivary tests and a statistically significant reduction of the area under the ROC-curve was displayed compared with the total Cariogram (p < 0.05). Among the salivary variables, omission of the mutans streptococci enumeration impaired the predictive ability the most.</p> <p>Conclusions</p> <p>The accuracy of caries prediction in school children was significantly impaired when the Cariogram model was applied without enumeration of salivary tests.</p

    Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli - an in vitro study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Probiotic bacteria are suggested to play a role in the maintenance of oral health. Such health promoting bacteria are added to different commercial probiotic products. The aim of the study was to investigate the ability of a selection of lactobacilli strains, used in commercially available probiotic products, to inhibit growth of oral mutans streptococci and <it>C. albicans in vitro</it>.</p> <p>Methods</p> <p>Eight probiotic lactobacilli strains were tested for growth inhibition on three reference strains and two clinical isolates of mutans streptococci as well as two reference strains and three clinical isolates of <it>Candida albicans </it>with an agar overlay method.</p> <p>Results</p> <p>At concentrations ranging from 10<sup>9 </sup>to 10<sup>5 </sup>CFU/ml, all lactobacilli strains inhibited the growth of the mutans streptococci completely with the exception of <it>L. acidophilus </it>La5 that executed only a slight inhibition of some strains at concentrations corresponding to 10<sup>7 </sup>and 10<sup>5 </sup>CFU/ml. At the lowest cell concentration (10<sup>3 </sup>CFU/ml), only <it>L. plantarum </it>299v and <it>L. plantarum </it>931 displayed a total growth inhibition while a slight inhibition was seen for all five mutans streptococci strains by <it>L. rhamnosus </it>LB21, <it>L. paracasei </it>F19, <it>L. reuteri </it>PTA 5289 and <it>L. reuteri </it>ATCC 55730. All the tested lactobacilli strains reduced candida growth but the effect was generally weaker than for mutans streptococci. The two <it>L. plantarum </it>strains and <it>L. reuteri </it>ATCC 55730 displayed the strongest inhibition on <it>Candida albicans</it>. No significant differences were observed between the reference strains and the clinical isolates.</p> <p>Conclusion</p> <p>The selected probiotic strains showed a significant but somewhat varying ability to inhibit growth of oral mutans streptococci and <it>Candida albicans in vitro</it>.</p

    A Systematic Map of Systematic Reviews in Pediatric Dentistry : What Do We Really Know?

    Get PDF
    Objectives To identify, appraise and summarize existing knowledge and knowledge gaps in practice-relevant questions in pediatric dentistry. Methods A systematic mapping of systematic reviews was undertaken for domains considered important in daily clinical practice. The literature search covered questions in the following domains: behavior management problems/dental anxiety; caries risk assessment and caries detection including radiographic technologies; prevention and non-operative treatment of caries in primary and young permanent teeth; operative treatment of caries in primary and young permanent teeth; prevention and treatment of periodontal disease; management of tooth developmental and mineralization disturbances; prevention and treatment of oral conditions in children with chronic diseases/developmental disturbances/obesity; diagnosis, prevention and treatment of dental erosion and tooth wear; treatment of traumatic injuries in primary and young permanent teeth and cost-effectiveness of these interventions. Abstracts and full text reviews were assessed independently by two reviewers and any differences were solved by consensus. AMSTAR was used to assess the risk of bias of each included systematic review. Reviews judged as having a low or moderate risk of bias were used to formulate existing knowledge and knowledge gaps. Results Out of 81 systematic reviews meeting the inclusion criteria, 38 were judged to have a low or moderate risk of bias. Half of them concerned caries prevention. The quality of evidence was high for a caries-preventive effect of daily use of fluoride toothpaste and moderate for fissure sealing with resin-based materials. For the rest the quality of evidence for the effects of interventions was low or very low. Conclusion There is an urgent need for primary clinical research of good quality in most clinically-relevant domains in pediatric dentistry

    Flow diagram showing the literature search strategy.

    No full text
    <p>Flow diagram chart showing the literature search strategy with the number of retrieved abstracts, included and excluded articles.</p

    Acid production in dental plaque after exposure to probiotic bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing interest in probiotic lactobacilli in health maintenance has raised the question of potential risks. One possible side effect could be an increased acidogenicity in dental plaque. The aim of this study was to investigate the effect of probiotic lactobacilli on plaque lactic acid (LA) production <it>in vitro</it> and <it>in vivo</it>.</p> <p>Methods</p> <p>In the first part (A), suspensions of two lactobacilli strains (<it>L. reuteri</it> DSM 17938<it>, L. plantarum</it> 299v) were added to suspensions of supragingival dental plaque collected from healthy young adults (n=25). LA production after fermentation with either xylitol or fructose was analyzed. In the second part (B), subjects (n=18) were given lozenges with probiotic lactobacilli (<it>L. reuteri</it> DSM 17938 and ATCC PTA 5289) or placebo for two weeks in a double-blinded, randomized cross-over trial. The concentration of LA in supragingival plaque samples was determined at baseline and after 2 weeks. Salivary counts of mutans streptococci (MS) and lactobacilli were estimated with chair-side methods.</p> <p>Results</p> <p>Plaque suspensions with <it>L. reuteri</it> DSM 17938 produced significantly less LA compared with <it>L. plantarum</it> 299v or controls (p<0.05). Fructose gave higher LA concentrations than xylitol. In part B, there were no significant differences in LA production between baseline and follow up in any of the groups and no differences between test and placebo were displayed. The salivary MS counts were not significantly altered during the intervention but the lactobacilli counts increased significantly in the test group (p<0.05).</p> <p>Conclusion</p> <p>Lactic acid production in suspensions of plaque and probiotic lactobacilli was strain-dependant and the present study provides no evidence of an increase in plaque acidity by the supply of selected probiotic lactobacilli when challenged by fructose or xylitol. The study protocol was approved by The Danish National Committee on Biomedical Research Ethics (protocol no H-2-2010-112).</p> <p>Trial registration</p> <p>NCT01700712</p

    Are we ready for caries prevention through bacteriotherapy?

    Get PDF
    Recent insights in medical science indicate that human biofilms play an important role in health and well-being, and have put microbiota modulation through bacteriotherapy into focus. In dentistry, bacterial interference with probiotic bacteria to support the stability and diversity of oral biofilms has gained similar interest. Investigations in vitro into metabolic activity, co-aggregation, growth inhibition, bacteriocin production, and adhesion have collectively suggested a potential role for probiotic lactobacilli and bifidobacteria to modulate the oral microbial ecology. Likewise, short-term clinical studies with intermediate microbial endpoints indicate that interference with caries-associated bacteria seems possible through probiotic dairy products, tablets, lozenges and chewing gum in various dose regimens. Few randomized controlled clinical trials with caries outcomes are available, but three studies with preschool children and the elderly have demonstrated preventive fractions between 21% and 75%, following regular intake of milk supplemented with probiotic lactobacilli. However, further large-scale trials with orally derived anti-caries candidates are needed before we can say that we are ready for bacteriotherapy as an adjunct to complement the existing evidence-based methods for preventing and controlling caries in daily practice

    Effect of fluoride and chlorhexidine digluconate mouthrinses on plaque biofilms

    No full text
    Objective. To develop a model in which to investigate the architecture of plaque biofilms formed on enamel surfaces in vivo and to compare the effects of anti-microbial agents of relevance for caries on biofilm vitality. Materials and Methodology : Enamel discs mounted on healing abutments in the pre-molar region were worn by three subjects for 7 days. Control discs were removed before subjects rinsed with 0.1% chlorhexidine digluconate (CHX) or 0.2% sodium fluoride (NaF) for 1 minute. Biofilms were stained with Baclight Live/Dead and z-stacks of images created using confocal scanning laser micoscopy. The levels of vital and dead/damaged bacteria in the biofilms, assessed as the proportion of green and red pixels respectively, were analysed using ImageTrak(®) software. Results : The subjects showed individual differences in biofilm architecture. The thickness of the biofilms varied from 28-96µm although cell density was always the greatest in the middle layers. In control biofilms, the overall levels of vitality were high (71-98%) especially in the area closest to the enamel interface. Rinsing with either CHX or NaF caused a similar reduction in overall vitality. CHX exerted an effect throughout the biofilm, particularly on the surface of cell clusters whereas NaF caused cell damage/death mainly in the middle to lower biofilm layers. Conclusion : We describe a model that allows the formation of mature, undisturbed oral biofilms on human enamel surfaces in vivo and show that CHX and NaF have a similar effect on overall vitality but differ in their sites of action
    corecore