101,449 research outputs found

    Finding Exponential Product Formulas of Higher Orders

    Full text link
    In the present article, we review a continual effort on generalization of the Trotter formula to higher-order exponential product formulas. The exponential product formula is a good and useful approximant, particularly because it conserves important symmetries of the system dynamics. We focuse on two algorithms of constructing higher-order exponential product formulas. The first is the fractal decomposition, where we construct higher-order formulas recursively. The second is to make use of the quantum analysis, where we compute higher-order correction terms directly. As interludes, we also have described the decomposition of symplectic integrators, the approximation of time-ordered exponentials, and the perturbational composition.Comment: 22 pages, 9 figures. To be published in the conference proceedings ''Quantum Annealing and Other Optimization Methods," eds. B.K.Chakrabarti and A.Das (Springer, Heidelberg

    Aging dynamics of ferromagnetic and reentrant spin glass phases in stage-2 Cu0.80_{0.80}C0.20_{0.20}Cl2_{2} graphite intercalation compound

    Full text link
    Aging dynamics of a reentrant ferromagnet stage-2 Cu0.8_{0.8}Co0.2_{0.2}Cl2_{2} graphite intercalation compound has been studied using DC magnetic susceptibility. This compound undergoes successive transitions at the transition temperatures TcT_{c} (8.7\approx 8.7 K) and TRSGT_{RSG} (3.3\approx 3.3 K). The relaxation rate SZFC(t)S_{ZFC}(t) exhibits a characteristic peak at tcrt_{cr} below TcT_{c}. The peak time tcrt_{cr} as a function of temperature TT shows a local maximum around 5.5 K, reflecting a frustrated nature of the ferromagnetic phase. It drastically increases with decreasing temperature below TRSGT_{RSG}. The spin configuration imprinted at the stop and wait process at a stop temperature TsT_{s} (<Tc<T_{c}) during the field-cooled aging protocol, becomes frozen on further cooling. On reheating, the memory of the aging at TsT_{s} is retrieved as an anomaly of the thermoremnant magnetization at TsT_{s}. These results indicate the occurrence of the aging phenomena in the ferromagnetic phase (TRSG<T<TcT_{RSG}<T<T_{c}) as well as in the reentrant spin glass phase (T<TRSGT<T_{RSG}).Comment: 9 pages, 9 figures; submitted to Physical Review

    The Free Energy and the Scaling Function of the Ferromagnetic Heisenberg Chain in a Magnetic Field

    Full text link
    A nonlinear susceptibilities (the third derivative of a magnetization mSm_S by a magnetic field hh ) of the SS=1/2 ferromagnetic Heisenberg chain and the classical Heisenberg chain are calculated at low temperatures T.T. In both chains the nonlinear susceptibilities diverge as T6T^{-6} and a linear susceptibilities diverge as T2.T^{-2}. The arbitrary spin SS Heisenberg ferromagnet [[ H=i=1N{JSiSi+1(h/S)Siz}{\cal H} = \sum_{i=1}^{N} \{ - J{\bf S}_{i} {\bf S}_{i+1} - (h/S) S_{i}^{z} \} (J>0),(J>0), ]] has a scaling relation between mS,m_S, hh and T:T: mS(T,h)=F(S2Jh/T2).m_S(T,h) = F( S^2 Jh/T^2). The scaling function F(x)F(x)=(2xx/3)-(44x3x^{3}/135) + O(x5x^{5}) is common to all values of spin S.S.Comment: 16 pages (revtex 2.0) + 6 PS figures upon reques

    Structure of the breakpoint region in CVC of the intrinsic Josephson junctions

    Get PDF
    A fine structure of the breakpoint region in the current-voltage characteristics of the coupled intrinsic Josephson junctions in the layered superconductors is found. We establish a correspondence between the features in the current-voltage characteristics and the character of the charge oscillations in superconducting layers in the stack and explain the origin of the breakpoint region structure.Comment: 5 pages, 5 figures. Accepted for Phys.Rev.

    Long-distance final-state interactions and J/psi decay

    Full text link
    To understand the short-distance vs long-distance final-state interactions, we have performed a detailed amplitude analysis for the two-body decay, J/psi into vector and pseudoscalar mesons. The current data favor a large relative phase nearly 90 degrees between the three-gluon and one-photon decay amplitudes. The source of this phase is apparently in the long-distance final-state interaction. Nothing anomalous is found in the magnitudes of the three-gluon and one-photon amplitudes. We discuss implications of this large relative phase in the weak decay of heavy particles.Comment: 11 pages, RevTe

    A Second-Order Distributed Trotter-Suzuki Solver with a Hybrid Kernel

    Full text link
    The Trotter-Suzuki approximation leads to an efficient algorithm for solving the time-dependent Schr\"odinger equation. Using existing highly optimized CPU and GPU kernels, we developed a distributed version of the algorithm that runs efficiently on a cluster. Our implementation also improves single node performance, and is able to use multiple GPUs within a node. The scaling is close to linear using the CPU kernels, whereas the efficiency of GPU kernels improve with larger matrices. We also introduce a hybrid kernel that simultaneously uses multicore CPUs and GPUs in a distributed system. This kernel is shown to be efficient when the matrix size would not fit in the GPU memory. Larger quantum systems scale especially well with a high number nodes. The code is available under an open source license.Comment: 11 pages, 10 figure
    corecore