5 research outputs found

    Intra-amniotic delivery of CFTR-expressing adenovirus does not reverse cystic fibrosis phenotype in inbred CFTR-knockout mice

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright © 2008 The American Society of Gene Therapy.Due to its early onset and severe prognosis, cystic fibrosis (CF) has been suggested as a candidate disease for in utero gene therapy. In 1997, a study was published claiming that to how transient prenatal expression of CF transmembrane conductance regulator (CFTR) from an in utero –injected adenovirus vector could achieve permanent reversal of the CF intestinal pathology in adult CF knockout mice, despite the loss of CFTR transgene expression by birth. This would imply that the underlying cause of CF is a prenatal defect for which lifelong cure can be achieved by transient prenatal expression of CFTR. Despite criticism at the time of publication, no independent verification of this contentious finding has been published so far. This is vital for the development of future therapeutic strategies as it may determine whether CF gene therapy should be performed prenatally or postnatally. We therefore reinvestigated this finding with an identical adenoviral vector and a knockout CF mouse line (CftrtmlCam) with a completely inbred genetic background to eliminate any effects due to genetic variation. After delivery of the CFTR-expressing adenovirus to the fetal mouse, both vector DNA and transgenic CFTR expression were detected in treated animals postpartum but statistically no significant difference in survival was observed between the Cftr–/– mice treated with the CFTR-adenovirus and those treated with the control vector.Sport Aiding Medical Research for Kids, the Cystic Fibrosis Trust, and the Katharine Dormandy Trust

    Transduction of fetal mice with a feline lentiviral vector induces liver tumors which exhibit an E2F activation signature

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2014 The American Society of Gene & Cell Therapy.Lentiviral vectors are widely used in basic research and clinical applications for gene transfer and long-term expression; however, safety issues have not yet been completely resolved. In this study, we characterized hepatocarcinomas that developed in mice 1 year after in utero administration of a feline-derived lentiviral vector. Mapped viral integration sites differed among tumors and did not coincide with the regions of chromosomal aberrations. Furthermore, gene expression profiling revealed that no known cancer-associated genes were deregulated in the vicinity of viral integrations. Nevertheless, five of the six tumors exhibited highly significant upregulation of E2F target genes, of which a majority are associated with oncogenesis, DNA damage response, and chromosomal instability. We further show in vivo and in vitro that E2F activation occurs early on following transduction of both fetal mice and cultured human hepatocytes. On the basis of the similarities in E2F target gene expression patterns among tumors and the lack of evidence implicating insertional mutagenesis, we propose that transduction of fetal mice with a feline lentiviral vector induces E2F-mediated major cellular processes that drive hepatocytes toward uncontrolled proliferation culminating in tumorigenesis.ISF, DFG, the Kamea Scientific Foundation, the European Research Council, the Lillyan & Alfy Nathan, Barbara Fox Miller, and Wolfson Foundations

    Gene Delivery of a Mutant TGFβ3 Reduces Markers of Scar Tissue Formation After Cutaneous Wounding

    No full text
    The transforming growth factor-β (TGFβ) family plays a critical regulatory role in repair and coordination of remodeling after cutaneous wounding. TGFβ1-mediated chemotaxis promotes the recruitment of fibroblasts to the wound site and their resultant myofibroblastic transdifferentiation that is responsible for elastic fiber deposition and wound closure. TGFβ3 has been implicated in an antagonistic role regulating overt wound closure and promoting ordered dermal remodeling. We generated a mutant form of TGFβ3 (mutTGFβ3) by ablating its binding site for the latency-associated TGFβ binding protein (LTBP-1) in order to improve bioavailability and activity. The mutated cytokine is secreted as the stable latency-associated peptide (LAP)-associated form and is activated by normal intracellular and extracellular mechanisms including integrin-mediated activation but is not sequestered. We show localized intradermal transduction using a lentiviral vector expressing the mutTGFβ3 in a mouse skin wounding model reduced re-epithelialization density and fibroblast/myofibroblast transdifferentiation within the wound area, both indicative of reduced scar tissue formation

    Influence of Coagulation Factor X on In Vitro and In Vivo Gene Delivery by Adenovirus (Ad) 5, Ad35, and Chimeric Ad5/Ad35 Vectors

    No full text
    The binding of coagulation factor X (FX) to the hexon of adenovirus (Ad) 5 is pivotal for hepatocyte transduction. However, vectors based on Ad35, a subspecies B Ad, are in development for cancer gene therapy, as Ad35 utilizes CD46 (which is upregulated in many cancers) for transduction. We investigated whether interaction of Ad35 with FX influenced vector tropism using Ad5, Ad35, and Ad5/Ad35 chimeras: Ad5/fiber(f)35, Ad5/penton(p)35/f35, and Ad35/f5. Surface plasmon resonance (SPR) revealed that Ad35 and Ad35/f5 bound FX with approximately tenfold lower affinities than Ad5 hexon–containing viruses, and electron cryomicroscopy (cryo-EM) demonstrated a direct Ad35 hexon:FX interaction. The presence of physiological levels of FX significantly inhibited transduction of vectors containing Ad35 fibers (Ad5/f35, Ad5/p35/f35, and Ad35) in CD46-positive cells. Vectors were intravenously administered to CD46 transgenic mice in the presence and absence of FX-binding protein (X-bp), resulting in reduced liver accumulation for all vectors. Moreover, Ad5/f35 and Ad5/p35/f35 efficiently accumulated in the lung, whereas Ad5 demonstrated poor lung targeting. Additionally, X-bp significantly reduced lung genome accumulation for Ad5/f35 and Ad5/p35/f35, whereas Ad35 was significantly enhanced. In summary, vectors based on the full Ad35 serotype will be useful vectors for selective gene transfer via CD46 due to a weaker FX interaction compared to Ad5

    Protein post-translational modifications and regulation of pluripotency in human stem cells

    No full text
    corecore