25 research outputs found
Workshop on immunotherapy combinations. Society for immunotherapy of cancer annual meeting Bethesda, November 3, 2011
Although recent FDA approvals on ipilimumab and sipuleucel-T represent major milestones, the ultimate success of immunotherapy approaches will likely benefit from appropriate combinations with other immunotherapeutic and/or non-immunotherapeutic approaches. However, implementation of ideal combinations in the clinic may still face formidable challenges in regulatory, drug-availability and intellectual property aspects. The 2011 SITC annual meeting hosted a workshop on combination immunotherapy to discuss: 1) the most promising combinations found in the laboratory; 2) early success of combination immunotherapy in clinical trials; 3) industry perspectives on combination approaches, and 4) relevant regulatory issues. The integrated theme was how to accelerate the implementation of efficacious combined immunotherapies for cancer patients. Rodent animal models are providing many examples of synergistic combinations that typically include more than two agents. However, mouse and human immunology differ in a significant number of mechanisms and hence we might be missing opportunities peculiar to humans. Nonetheless, incisive animal experimentation with deep mechanistic insight remains the best compass that we can use to guide our paths in combinatorial immunotherapy. Combination immunotherapy clinical trials are already in progress and preliminary results are extremely promising. As a key to translate promising combinations into clinic, real and “perceived” business and regulatory hurdles were debated. A formidable step forward would be to be able to test combinations of investigational agents prior to individual approval. Taking together the FDA and the industrial perspective on combinatorial immunotherapy, the audience was left with the clear message that this is by no means an impossible task. The general perception is that the road ahead of us is full of combination clinical trials which hopefully will bring clinical benefit to our cancer patients at a fast pace
A Bayesian comparative effectiveness trial in action: developing a platform for multisite study adaptive randomization
A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Background
In the last few decades, the number of trials using Bayesian methods has grown rapidly. Publications prior to 1990 included only three clinical trials that used Bayesian methods, but that number quickly jumped to 19 in the 1990s and to 99 from 2000 to 2012. While this literature provides many examples of Bayesian Adaptive Designs (BAD), none of the papers that are available walks the reader through the detailed process of conducting a BAD. This paper fills that gap by describing the BAD process used for one comparative effectiveness trial (Patient Assisted Intervention for Neuropathy: Comparison of Treatment in Real Life Situations) that can be generalized for use by others. A BAD was chosen with efficiency in mind. Response-adaptive randomization allows the potential for substantially smaller sample sizes, and can provide faster conclusions about which treatment or treatments are most effective. An Internet-based electronic data capture tool, which features a randomization module, facilitated data capture across study sites and an in-house computation software program was developed to implement the response-adaptive randomization.
Results
A process for adapting randomization with minimal interruption to study sites was developed. A new randomization table can be generated quickly and can be seamlessly integrated in the data capture tool with minimal interruption to study sites.
Conclusion
This manuscript is the first to detail the technical process used to evaluate a multisite comparative effectiveness trial using adaptive randomization. An important opportunity for the application of Bayesian trials is in comparative effectiveness trials. The specific case study presented in this paper can be used as a model for conducting future clinical trials using a combination of statistical software and a web-based application.
Trial registration
ClinicalTrials.gov Identifier: NCT02260388, registered on 6 October 201
Workshop on immunotherapy combinations. Society for Immunotherapy of Cancer annual meeting
Abstract Although recent FDA approvals on ipilimumab and sipuleucel-T represent major milestones, the ultimate success of immunotherapy approaches will likely benefit from appropriate combinations with other immunotherapeutic and/or non-immunotherapeutic approaches. However, implementation of ideal combinations in the clinic may still face formidable challenges in regulatory, drug-availability and intellectual property aspects. The 2011 SITC annual meeting hosted a workshop on combination immunotherapy to discuss: 1) the most promising combinations found in the laboratory; 2) early success of combination immunotherapy in clinical trials; 3) industry perspectives on combination approaches, and 4) relevant regulatory issues. The integrated theme was how to accelerate the implementation of efficacious combined immunotherapies for cancer patients. Rodent animal models are providing many examples of synergistic combinations that typically include more than two agents. However, mouse and human immunology differ in a significant number of mechanisms and hence we might be missing opportunities peculiar to humans. Nonetheless, incisive animal experimentation with deep mechanistic insight remains the best compass that we can use to guide our paths in combinatorial immunotherapy. Combination immunotherapy clinical trials are already in progress and preliminary results are extremely promising. As a key to translate promising combinations into clinic, real and "perceived" business and regulatory hurdles were debated. A formidable step forward would be to be able to test combinations of investigational agents prior to individual approval. Taking together the FDA and the industrial perspective on combinatorial immunotherapy, the audience was left with the clear message that this is by no means an impossible task. The general perception is that the road ahead of us is full of combination clinical trials which hopefully will bring clinical benefit to our cancer patients at a fast pace
Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909
T cells with specificity for antigens derived from Wilms Tumor gene (WT1), Proteinase3 (Pr3), and mucin1 (MUC1) have been demonstrated to lyse acute myeloid leukemia (AML) blasts and multiple-myeloma (MM) cells, and strategies to enhance or induce such tumor-specific T cells by vaccination are currently being explored in multiple clinical trials. To test safety and immunogenicity of a vaccine composed of WT1-, Pr3-, and MUC1-derived Class I-restricted peptides and the pan HLA-DR T helper cell epitope (PADRE) or MUC1-helper epitopes in combination with CpG7909 and MontanideISA51, four patients with AML and five with MM were repetitively vaccinated. No clinical responses were observed. Neither pre-existing nor naive WT1-/Pr3-/MUC1-specific CD8+ T cells expanded in vivo by vaccination. In contrast, a significant decline in vaccine-specific CD8+ T cells was observed. An increase in PADRE-specific CD4+ T helper cells was observed after vaccination but these appeared unable to produce IL2, and CD4+ T cells with a regulatory phenotype increased. Taken into considerations that multiple clinical trials with identical antigens but different adjuvants induced vaccine-specific T cell responses, our data caution that a vaccination with leukemia-associated antigens can be detrimental when combined with MontanideISA51 and CpG7909. Reflecting the time-consuming efforts of clinical trials and the fact that 1/3 of ongoing peptide vaccination trails use CpG and/or Montanide, our data need to be taken into consideration
Recommended from our members
Workshop on immunotherapy combinations. Society for Immunotherapy of Cancer annual meeting Bethesda, November 3, 2011.
Although recent FDA approvals on ipilimumab and sipuleucel-T represent major milestones, the ultimate success of immunotherapy approaches will likely benefit from appropriate combinations with other immunotherapeutic and/or non-immunotherapeutic approaches. However, implementation of ideal combinations in the clinic may still face formidable challenges in regulatory, drug-availability and intellectual property aspects. The 2011 SITC annual meeting hosted a workshop on combination immunotherapy to discuss: 1) the most promising combinations found in the laboratory; 2) early success of combination immunotherapy in clinical trials; 3) industry perspectives on combination approaches, and 4) relevant regulatory issues. The integrated theme was how to accelerate the implementation of efficacious combined immunotherapies for cancer patients. Rodent animal models are providing many examples of synergistic combinations that typically include more than two agents. However, mouse and human immunology differ in a significant number of mechanisms and hence we might be missing opportunities peculiar to humans. Nonetheless, incisive animal experimentation with deep mechanistic insight remains the best compass that we can use to guide our paths in combinatorial immunotherapy. Combination immunotherapy clinical trials are already in progress and preliminary results are extremely promising. As a key to translate promising combinations into clinic, real and "perceived" business and regulatory hurdles were debated. A formidable step forward would be to be able to test combinations of investigational agents prior to individual approval. Taking together the FDA and the industrial perspective on combinatorial immunotherapy, the audience was left with the clear message that this is by no means an impossible task. The general perception is that the road ahead of us is full of combination clinical trials which hopefully will bring clinical benefit to our cancer patients at a fast pace
Workshop on immunotherapy combinations. Society for immunotherapy of cancer annual meeting Bethesda, November 3, 2011
Although recent FDA approvals on ipilimumab and sipuleucel-T represent major milestones, the ultimate success of immunotherapy approaches will likely benefit from appropriate combinations with other immunotherapeutic and/or non-immunotherapeutic approaches. However, implementation of ideal combinations in the clinic may still face formidable challenges in regulatory, drug-availability and intellectual property aspects. The 2011 SITC annual meeting hosted a workshop on combination immunotherapy to discuss: 1) the most promising combinations found in the laboratory; 2) early success of combination immunotherapy in clinical trials; 3) industry perspectives on combination approaches, and 4) relevant regulatory issues. The integrated theme was how to accelerate the implementation of efficacious combined immunotherapies for cancer patients. Rodent animal models are providing many examples of synergistic combinations that typically include more than two agents. However, mouse and human immunology differ in a significant number of mechanisms and hence we might be missing opportunities peculiar to humans. Nonetheless, incisive animal experimentation with deep mechanistic insight remains the best compass that we can use to guide our paths in combinatorial immunotherapy. Combination immunotherapy clinical trials are already in progress and preliminary results are extremely promising. As a key to translate promising combinations into clinic, real and “perceived” business and regulatory hurdles were debated. A formidable step forward would be to be able to test combinations of investigational agents prior to individual approval. Taking together the FDA and the industrial perspective on combinatorial immunotherapy, the audience was left with the clear message that this is by no means an impossible task. The general perception is that the road ahead of us is full of combination clinical trials which hopefully will bring clinical benefit to our cancer patients at a fast pace
TB-PRACTECAL: study protocol for a randomised, controlled, open-label, phase II-III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrug-resistant tuberculosis.
BACKGROUND: Globally rifampicin-resistant tuberculosis disease affects around 460,000 people each year. Currently recommended regimens are 9-24 months duration, have poor efficacy and carry significant toxicity. A shorter, less toxic and more efficacious regimen would improve outcomes for people with rifampicin-resistant tuberculosis. METHODS: TB-PRACTECAL is an open-label, randomised, controlled, phase II/III non-inferiority trial evaluating the safety and efficacy of 24-week regimens containing bedaquiline and pretomanid to treat rifampicin-resistant tuberculosis. Conducted in Uzbekistan, South Africa and Belarus, patients aged 15 and above with rifampicin-resistant pulmonary tuberculosis and requiring a new course of therapy were eligible for inclusion irrespective of HIV status. In the first stage, equivalent to a phase IIB trial, patients were randomly assigned one of four regimens, stratified by site. Investigational regimens include oral bedaquiline, pretomanid and linezolid. Additionally, two of the regimens also included moxifloxacin (arm 1) and clofazimine (arm 2) respectively. Treatment was administered under direct observation for 24 weeks in investigational arms and 36 to 96 weeks in the standard of care arm. The second stage of the study was equivalent to a phase III trial, investigating the safety and efficacy of the most promising regimen/s. The primary outcome was the percentage of unfavourable outcomes at 72 weeks post-randomisation. This was a composite of early treatment discontinuation, treatment failure, recurrence, lost-to-follow-up and death. The study is being conducted in accordance with ICH-GCP and full ethical approval was obtained from Médecins sans Frontières ethical review board, London School of Hygiene and Tropical Medicine ethical review board as well as ERBs and regulatory authorities at each site. DISCUSSION: TB-PRACTECAL is an ambitious trial using adaptive design to accelerate regimen assessment and bring novel treatments that are effective and safe to patients quicker. The trial took a patient-centred approach, adapting to best practice guidelines throughout recruitment. The implementation faced significant challenges from the COVID-19 pandemic. The trial was terminated early for efficacy on the advice of the DSMB and will report on data collected up to the end of recruitment and, additionally, the planned final analysis at 72 weeks after the end of recruitment. TRIAL REGISTRATION: Clinicaltrials.gov NCT02589782. Registered on 28 October 2015
TB-PRACTECAL: study protocol for a randomised, controlled, open-label, phase II–III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrug-resistant tuberculosis
Abstract
Background
Globally rifampicin-resistant tuberculosis disease affects around 460,000 people each year. Currently recommended regimens are 9–24 months duration, have poor efficacy and carry significant toxicity. A shorter, less toxic and more efficacious regimen would improve outcomes for people with rifampicin-resistant tuberculosis.
Methods
TB-PRACTECAL is an open-label, randomised, controlled, phase II/III non-inferiority trial evaluating the safety and efficacy of 24-week regimens containing bedaquiline and pretomanid to treat rifampicin-resistant tuberculosis. Conducted in Uzbekistan, South Africa and Belarus, patients aged 15 and above with rifampicin-resistant pulmonary tuberculosis and requiring a new course of therapy were eligible for inclusion irrespective of HIV status. In the first stage, equivalent to a phase IIB trial, patients were randomly assigned one of four regimens, stratified by site. Investigational regimens include oral bedaquiline, pretomanid and linezolid. Additionally, two of the regimens also included moxifloxacin (arm 1) and clofazimine (arm 2) respectively. Treatment was administered under direct observation for 24 weeks in investigational arms and 36 to 96 weeks in the standard of care arm. The second stage of the study was equivalent to a phase III trial, investigating the safety and efficacy of the most promising regimen/s. The primary outcome was the percentage of unfavourable outcomes at 72 weeks post-randomisation. This was a composite of early treatment discontinuation, treatment failure, recurrence, lost-to-follow-up and death. The study is being conducted in accordance with ICH-GCP and full ethical approval was obtained from Médecins sans Frontières ethical review board, London School of Hygiene and Tropical Medicine ethical review board as well as ERBs and regulatory authorities at each site.
Discussion
TB-PRACTECAL is an ambitious trial using adaptive design to accelerate regimen assessment and bring novel treatments that are effective and safe to patients quicker. The trial took a patient-centred approach, adapting to best practice guidelines throughout recruitment. The implementation faced significant challenges from the COVID-19 pandemic. The trial was terminated early for efficacy on the advice of the DSMB and will report on data collected up to the end of recruitment and, additionally, the planned final analysis at 72 weeks after the end of recruitment.
Trial registration
Clinicaltrials.gov NCT02589782. Registered on 28 October 2015.
</jats:sec
Tb-practecal: Study Protocol for a Randomised, Controlled, Open-label, Phase II-III Trial to Evaluate the Safety and Efficacy of Regimens Containing Bedaquiline and Pretomanid for the Treatment of Adult Patients With Pulmonary Multidrug Resistant Tuberculosis
Abstract
BackgroundGlobally rifampicin-resistant tuberculosis disease affects around 460 000 people each year. Current recommended regimens are 9-24 months duration, have poor efficacy and carry significant toxicity. A shorter, less toxic and more efficacious regimen would improve outcomes for people with rifampicin-resistant tuberculosis. MethodsTB-PRACTECAL is an open-label, randomised, controlled, phase II/III non-inferiority trial evaluating the safety and efficacy of 24 week regimens containing bedaquiline and pretomanid to treat rifampicin resistant tuberculosis. Conducted in Uzbekistan, South Africa and Belarus, patients aged 15 and above with rifampicin resistant pulmonary tuberculosis and requiring a new course of therapy are eligible for inclusion irrespective of HIV status. In the first stage, equivalent to a phase IIB trial, patients are randomly assigned one of four regimens, stratified by site. Investigational regimens include oral bedaquiline, pretomanid and linezolid. Additionally, two of the regimens also include moxifloxacin (arm 1) and clofazimine (arm 2) respectively. Treatment is administered under direct observation for 24 weeks in investigational arms and 36 to 96 weeks in the standard of care arm. The second stage of the study is equivalent to a phase III trial, investigating the safety and efficacy of the most promising regimen/s. The primary outcome is the percentage of unfavourable outcomes at 72 weeks post randomisation. This is a composite of early treatment discontinuation, treatment failure, recurrence, lost to follow up and death. The study is conducted in accordance with ICH-GCP and full ethical approval was obtained from Médecins sans Frontières ethical review board, London School of Hygiene and Tropical Medicine ethical review board as well as ERBs and regulatory authorities at each site. DiscussionTB-PRACTECAL is an ambitious trial using adaptive design to accelerate regimen assessment and bring novel regimens that are effective and safe to patients quicker. The trial took a patient-centred approach, adapting to best practice guidelines throughout recruitment. The implementation faced significant challenges from the COVID-19 pandemic. The trial was terminated early for efficacy on the advice of the DSMB and will report on data collected up to end of recruitment and additionally, the planned final analysis at 72 weeks after end of recruitment. Trial registrationClinicaltrials.gov registration number NCT02589782</jats:p
Additional file 1 of TB-PRACTECAL: study protocol for a randomised, controlled, open-label, phase II–III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrug-resistant tuberculosis
Additional file 1
