123 research outputs found

    Doxorubicin-Loaded Human Serum Albumin Submicron Particles: Preparation, Characterization and In Vitro Cellular Uptake

    Get PDF
    Doxorubicin (DOX) is an effective anthracycline antibiotic drug which is commonly used in a broad range cancer therapy. However, due to dose depending side effects and toxicity to non-cancerous tissues, its clinical applications are restricted. To overcome these limitations, human serum albumin (HSA) has been investigated as a biocompatible drug delivery vehicle. In this study, human serum albumin submicron particles (HSA-MPs) were fabricated by using the Co-precipitation-Crosslinking-Dissolution technique (CCD technique) and DOX was loaded into the protein particles by absorption. DOX-HSA-MPs showed uniform peanut-like shape, submicron size and negative zeta-potential (-13 mV). The DOX entrapment efficiency was 25% of the initial amount. The in vitro release in phosphate buffered saline pH 7.4 was less than 1% within 5 h. In contrast, up to 40% of the entrapped DOX was released in presence of a protein digesting enzyme mixture (Pronase®) within the same time. In addition, in vitro cytotoxicity and cellular uptake of DOX-HSA-MPs were evaluated using the lung carcinoma cell line A549. The results demonstrated that DOX-HSA-MPs reduced the cell metabolic activities after 72 h. Interestingly, DOX-HSA-MPs were taken up by A549 cells up to 98% and localized in the cell lysosomal compartment. This study suggests that DOX-HSA-MPs which was fabricated by CCD technique is seen as a promising biopolymer particle as well as a viable alternative for drug delivery application to use for cancer therapy

    EFL teachers’ maxims: the impact of COVID-19 pandemic on online teaching in the Thai tertiary context

    Get PDF
    The COVID-19 pandemic in Thailand in 2020-2021 tremendously affected English language instruction in higher education institutions. When most English as a Foreign Language (EFL) teachers had to relocate their classes from face-to-face settings to online platforms, they were required to change their instructional techniques, tools and materials, and class activities to cope with the new classroom environment. This study aimed to examine English teachers' maxims of teaching the English language through online applications during the COVID-19 pandemic in 2020-2021, which intensified the technology disruption in teaching. The main objective was to investigate teachers' personal principles regarding online instruction and emerging challenges. The quantitative data was obtained by a survey questionnaire administered to 67 university EFL lecturers. The qualitative data was collected through personal narratives and focus group interviews with 12 volunteer lecturers who shared their personal principles that navigated their teaching approaches. The findings revealed that the emerging teachers' maxims in online learning included planning lessons and selecting instructional tools, facilitating students' engagement, maintaining class management and order, and interacting with peer teachers. It was found that the major challenges in EFL online instruction were the effectiveness of instruction and issues in promoting students’ engagement in collaborative tasks. In addition, the pivotal factors influencing virtual classrooms included teachers’ level of preparation and students’ limited interactions

    Multimodality Imaging to Detect Vulnerable Plaque in Coronary Arteries and Its Clinical Application

    Get PDF
    Postmortem studies have described the association between the thin-cap fibroatheroma (TCFA) and the occurrence of acute coronary syndrome (ACS). Both noninvasive and invasive techniques have been refined and used as a research tool to visualize the plaque at a high risk of disruption. There has been a considerable effort to develop the imaging modalities that offer detailed visualization of coronary pathology and accurately predict the adverse cardiac outcomes. This chapter provides an overview of the current and experimental coronary imaging methods to detect vulnerable plaque and discuss the potential implication of multimodality imaging in clinical practice

    Determination of Methemoglobin in Hemoglobin Submicron Particles Using NMR Relaxometry

    Get PDF
    Methemoglobin (MetHb) is a hemoglobin (Hb) derivative with the heme iron in ferric state (Fe3+), unable to deliver oxygen. Quantification of methemoglobin is a very important diagnostic parameter in hypoxia. Recently, novel hemoglobin microparticles (Hb-MP) with a narrow size distribution around 700 nm, consisting of cross-linked Hb were proposed as artificial oxygen carriers. The cross-linking of Hb by glutaraldehyde (GA) generates a certain amount of MetHb. Due to the strong light scattering, quantitative determination of MetHb in Hb-MP suspensions by common spectrophotometry is not possible. Here, we demonstrate that 1H2O NMR relaxometry is a perfect tool for direct measurement of total Hb and MetHb concentrations in Hb-MP samples. The longitudinal relaxation rate 1/T1 shows a linear increase with increasing MetHb concentration, whereas the transverse relaxation rate 1/T2 linearly increases with the total Hb concentration. In both linear regressions the determination coefficient (R2) is higher than 0.99. The method does not require time-consuming pretreatment or digestion of the particles and is not impaired by light scattering. Therefore, it can be established as the method of choice for the quality control of Hb-MP and similar hemoglobin-based oxygen carriers in the future

    Functional evaluation of coronary disease by CT angiography

    Get PDF
    Publisher Copyright: © 2015 American College of Cardiology Foundation.In recent years, several technical developments in the field of cardiac computed tomography (CT) have made possible the extraction of functional information from an anatomy-based examination. Several different lines have been explored and will be reviewed in the present paper, namely: 1) myocardial perfusion imaging; 2) transluminal attenuation gradients and corrected coronary opacification indexes; 3) fractional flow reserve computed from CT; and 4) extrapolation from atherosclerotic plaque characteristics. In view of these developments, cardiac CT has the potential to become in the near future a truly 2-in-1 noninvasive evaluation for coronary artery disease.publishersversionpublishe

    Comparative assessment of “plaque/media” change on three modalities of IVUS immediately after implantation of either everolimus-eluting bioresorbable vascular scaffold or everolimus-eluting metallic stent in Absorb II study

    Get PDF
    The purpose of the study to assess the comparability of immediate changes in plaque/media volume (PV) on three modalities of intravascular ultrasound (IVUS) after implantation of either bioresorbable vascular scaffold (BVS) or everolimus-eluting metallic stent (EES) in Absorb II Study. The two devices have different device volume and ultrasound backscattering that may interfere with the "plaque/media" assessed by three modalities on IVUS: grayscale, backscattering of radiofrequency and brightness function. In a multicenter randomized controlled trial, 501 patients with stable or unstable angina underwent documentary IVUS pre- and post- implantation. The change in plaque/media volume (PV) was categorized into three groups according to the relative PV change in device segment: PV "increased" >+5% (PVI), PV unchanged ±5% (PVU), and PV decreased <-5% (PVD). The change in PV was re-evaluated three times: after subtraction of theoretical device volume, after analysis of echogenicity based on brightness function. In 449 patients, 483 lesions were analyzed pre- and post-implantation. "PVI" was more frequently observed in BVS (53.8%) than EES group (39.4%), p = 0.006. After subtraction of the theoretical device volume, the frequency of "PVI" decreased in both BVS (36.2%) and EES (32.1%) groups and became comparable (p = 0.581). In addition, the percentage of "PVI" was further reduced in both device groups after correction for either radiofrequency backscattering (BVS 34.4% vs. EES 22.6%) or echogenicity (BVS 25.2% vs. EES 9.7%). PV change in device segment was differently affected by BVS and EES devices implantation due to their differences in device volume and ultrasound backscattering. It implies that the lumen volume was also artifactually affected by the type of device implanted. Comparative IVUS assessment of lumen and plaque/media volume changes following implantation of BVS and EES requires specific methodological adjustmen

    Quantitative assessment of the stent/scaffold strut embedment analysis by optical coherence tomography

    Get PDF
    The degree of stent/scaffold embedment could be a surrogate parameter of the vessel wall-stent/scaffold interaction and could have biological implications in the vascular response. We have developed a new specific software for the quantitative evaluation of embedment of struts by optical coherence tomography (OCT). In the present study, we described the algorithm of the embedment analysis and its reproducibility. The degree of embedment was evaluated as the ratio of the embedded part versus the whole strut height and subdivided into quartiles. The agreement and the inter- and intra-observer reproducibility were evaluated using the kappa and the interclass correlation coefficient (ICC). A total of 4 pullbacks of OCT images in 4 randomly selected coronary lesions with 3.0 × 18 mm devices [2 lesions with Absorb BVS and 2 lesions with XIENCE (both from Abbott Vascular, Santa Clara, CA, USA)] from Absorb Japan trial were evaluated by two investigators with QCU-CMS software version 4.69 (Leiden University Medical Center, Leiden, The Netherlands). Finally, 1481 polymeric struts in 174 cross-sections and 1415 metallic struts in 161 cross-sections were analyzed. Inter- and intra-observer reproducibility of quantitative measurements of embedment ratio and categorical asses
    • …
    corecore