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ABSTRACT

ess than 10 years have passed since the publica-

tion of the first studies reporting on the diag-

nostic performance of the 64-slice scanners,
which led to the wide adoption of cardiac computed to-
mography (CT) in clinical practice (1,2), and we are still
witnessing impressive technical improvements in this
field. These advances have led to significant improve-
ments in temporal resolution and volume coverage
and associated reductions in scan time, contrast, and
radiation dose, which have made possible the progres-
sive development of protocols aimed at extracting
functional information about coronary artery disease
(CAD) lesions. This is of utmost importance because
clinical decision making, namely the decision to pro-
ceed to a revascularization procedure, is based on the
expected functional effect of CAD lesions, as it has
been well documented that there is no prognostic
benefit of revascularization in the absence of func-
tional significance (3-5). Several noninvasive diag-
nostic tools are already readily available, from the
simple exercise electrocardiogram (ECG) to stress
echocardiography, single-photon emission computed
tomography (SPECT), and stress cardiac magnetic
resonance imaging (CMR), and their use in clinical

In recent years, several technical developments in the field of cardiac computed tomography (CT) have made possible the
extraction of functional information from an anatomy-based examination. Several different lines have been explored and
will be reviewed in the present paper, namely: 1) myocardial perfusion imaging; 2) transluminal attenuation gradients and
corrected coronary opacification indexes; 3) fractional flow reserve computed from CT; and 4) extrapolation from
atherosclerotic plaque characteristics. In view of these developments, cardiac CT has the potential to become in the near
future a truly 2-in-1 noninvasive evaluation for coronary artery disease. (J Am Coll Cardiol Img 2015;8:1322-35)
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practice is influenced by several different factors
related not only to their diagnostic performance, but
also to availability and patient-related features (6).
The potential advantage of cardiac CT in this field
comes from both its wide clinical adoption in recent
years and the attractive concept of having a 2-in-1
examination, providing anatomic plus functional
CAD evaluation. In this concept, cardiac CT might
be able to not only rule out CAD with a very high
accuracy, but also provide additional functional
information in case CAD is documented, moving
beyond the usual classification of obstructive versus
nonobstructive to a more functional-based interpre-
tation of significant versus nonsignificant CAD, a
feature that is linked more closely to the current
clinical decision algorithm.

MYOCARDIAL PERFUSION IMAGING

The diagnostic accuracy and prognostic value of car-
diac CT in patients with low to intermediate CAD
likelihood has been largely established. Nevertheless,
the performance of this technique in patients with in-
termediate to high CAD likelihood has been associated
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with alow specificity. The major advantage of coronary
computed tomographic angiography (CTA) lies in a
very high negative predictive value, which rules out
CAD with high reliability. However, the positive pre-
dictive value of the test is not sufficiently high,
ascribed to a relatively high false positive rate in
selected populations (7). This is mainly due to the
presence of artifacts (i.e., blooming, beam hardening)
related to coronary calcification in the setting of
the still limited spatial resolution of this technique
(8). The presence of heavy, particularly concentric,
calcification hampers the clear visualization of lumen
and its distinction from atherosclerotic plaque,
occasionally resulting in false positive findings
and/or inconclusive studies, and thus leading to po-
tential unnecessary referral to invasive coronary
angiography (ICA) or to further diagnostic tests.
Overall, these limitations broaden the spectrum of
restrictions of the technique in addition to other
exclusion criteria, such as patients with arrhythmia
and inability to achieve target heart rate (due to
motion artifacts) and patients at risk of contrast-
induced nephropathy.

However, the fact that obstructive lesions identi-
fied by cardiac CT have demonstrated a weak corre-
lation with the presence of ischemia underscores the
need for a hemodynamic assessment in addition to
the anatomic evaluation (9,10).

Despite recent conflicting findings from a sub-
analysis of the COURAGE (Clinical Outcomes Utilizing
Revascularization and Aggressive Drug Evaluation)
and STICH (Surgical Treatment for Ischemic Heart
Failure) trials, which have casted some doubts
regarding the prognostic value of inducible ischemia as
the sole indicator of revascularization, clinical deci-
sion making remains linked to the presence or absence
of myocardial ischemia, given the largely established
prognostic value of stress myocardial perfusion imag-
ing (11,12). Furthermore, the estimation of the phy-
siological effect of a given epicardial obstruction
(particularly of intermediate lesions) is highly relevant
to determining a treatment strategy, independently of
the pre-test CAD likelihood.

Overall, the previously mentioned shortcomings
have set the foundation for major technical deve-
lopments achieved during the past decade, aimed at
evaluating the functional significance of coronary
stenosis by means of cardiac CT. One of the emerging
strategies in this regard is CT myocardial perfusion
imaging (MPI) under pharmacological stress, a tech-
nique that is positioned as the only tool capable of
detecting a stenosis, which establishes its hemody-
namic significance. Two different approaches are
available for CT-MPI: static or dynamic (Table 1).
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Static CT-MPI acquisitions comprise the
evaluation of myocardial perfusion obtained
from a single dataset acquired during first-
pass enhancement and enable a qualitative
assessment of differences in contrast en-
hancement based on myocardial perfusion

the ischemic areas are compared with the
signal density of the remote (normal) myo-

balanced myocardial ischemia may not be
easily identified using this technique, al-
though it is noteworthy that diffuse ischemia

mogeneously low myocardial attenuation
levels. In parallel, peak myocardial attenua-

curate, thus potentially affecting the ability to
discriminate between normal and ischemic
regions (16).

However, dynamic CT-MPI provides a
quantitative estimation of myocardial time-
attenuation curves and other parameters such as
myocardial blood flow (MBF) (17-21). The concept of
dynamic CT-MPI is based on the evaluation of mul-
tiple sequential CT datasets of myocardial attenua-
tion levels after the injection of a contrast bolus,
enabling the generation of time-attenuation curves
during arrival and washout of contrast to and from
the myocardium and aorta over time. Quantification
of absolute MBF using this technique has been vali-
dated in animal models using variable degrees of
coronary stenosis, showing a good correlation be-
tween CT-MBF and coronary blood flow as well as
between CT-MBF and fractional flow reserve (FFR)
(22,23). Several clinical studies have been conducted

aiming to assess absolute quantification of MBF using
stress dynamic CT-MPI in humans (21,24,25). Indeed,
cutoff points between 75 and 78 ml/100 ml/min have
been proposed as the optimal threshold values for the
discrimination between significant and nonsignificant
lesions (21,26).

The core limitation of dynamic CT-MPI is a signif-
icantly increased radiation dose compared with static
CT-MPI, as well as the need for longer breath-holding
that warrants the use of further motion correction
algorithms (27,28). Indeed, effective radiation dose of
dynamic CT-MPI using 128-detector dual-source
scanners has been reported to range between 9.2
and 12.5 mSv (28). Moreover, a number of studies
have suggested that MBF measurements might be
slightly underestimated by dynamic CT-MPI (24,29).

Static CT-MPI demands an additional scan to con-
ventional coronary CTA protocol; thereby, radiation

CCO = corrected coronary
opacification

. i CMR = cardiac magnetic
(13-15). In this approach, attenuation levels of resonance

HU = Hounsfield units

ICA = invasive coronary
might be identified as a myocardium with ho- angiography

SPECT = single-photon
emission computed
tomography

TAG = transluminal
attenuation gradients
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cardium areas. Accordingly, patients with angiography

FFR = fractional flow reserve

MBF = myocardial blood flow

MPI = myocardial perfusion
tion may be missed if bolus timing is not ac- imaging
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exposure of this approach is directly related to the
acquisition mode. Although acquisitions using
128-slice dual-source high-pitch CT-MPI have been
reported to achieve a radiation exposure of only 2.5
mSv for the entire stress/rest CT protocol, this has not
been replicated in other studies (30).

It is noteworthy that both approaches (static and
dynamic CT-MPI) have shown a high diagnostic per-
formance for the detection of perfusion defects, and a
recent study has shown a good agreement between
both methods (31).

The aim of stress CT-MPI is to complement coro-
nary CTA findings during a single procedure.
Numerous single-center studies have validated this
application using different scanners, pharmacological
agents (adenosine, dipyridamole, and regadenoson),
and acquisition protocols (14,15,17-19,30-33). Overall,
these studies showed good agreement between stress
CT-MPI and SPECT, ICA, and/or stress CMR, with the
obvious advantage of providing additional informa-
tion regarding the presence and extent of underlying
coronary obstruction. Indeed, most of the aforemen-
tioned studies indicated that the addition of stress
CT-MPI provides a significant incremental value over
anatomic evaluation alone by coronary CTA for the
detection of reversible perfusion defects. Stress CMR
is currently considered the noninvasive reference
standard in terms of MPI, and CT-MPI has demon-
strated a 86% sensitivity, 98% specificity, 94% posi-
tive predictive value, and 96% negative predictive
value for the detection of perfusion defects compared
with CMR (33). Stress CT-MPI has also been recently
compared to FFR, showing that in territories where
coronary CTA and CT-MPI are concordant, the com-
bined evaluation is highly accurate in the detection
and exclusion of ischemia (32). In that study, the
specificity and positive predictive value increased
from 84% to 98% and from 82% to 97%, respectively,
after adding CT-MPI to CTA.

A recently published multicenter study (CORE320
[Coronary Artery Evaluation using 320-row Multi-
detector Computed Tomography Angiography and
Myocardial Perfusion]) has confirmed earlier findings
on a larger scale. In this study, the overall perfor-
mance of CT-MPI in the diagnosis of obstructive CAD
was higher than that of SPECT. Whereas SPECT
demonstrated a higher specificity, CT-MPI showed a
higher sensitivity, partly due to the higher sensitivity
for left main and multivessel disease assessment (34).
It should be noted that the reference used in
this study was a conservative anatomic threshold of
50% stenosis by ICA. More recently, a randomized,
multicenter, multivendor study demonstrated non-
inferiority of regadenoson CT-MPI compared with
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SPECT for the detection of myocardial ischemia, with
an agreement rate of 0.87 (95% confidence interval
[CI]: 0.77 to 0.97). In this study, the diagnostic
accuracy of CT-MPI and coronary CTA alone were 0.85
(95% CI: 0.78 to 0.91) and 0.69 (95% CI: 0.60 to 0.77),
respectively (35).

As previously mentioned, static CT-MPI requires 2
scans: 1 with pharmacological stress and the other
during rest (Figure 1). In general, retrospective ECG
gating is used for stress acquisitions with tube current
modulation aimed at decreasing radiation dose as low
as possible. Retrospective acquisitions are less sus-
ceptible to artifacts related to increased and/or
irregular heart rate and allow the possibility of having
systolic and diastolic phases that aid the discrimina-
tion between motion artifacts and perfusion defects.
Rest scans are usually performed in prospective
mode to achieve the lowest radiation dose. Overall,
this combined scan allows the simultaneous evalua-
tion of coronary anatomy as well as the functional
significance of CAD by assessing myocardial perfusion
after hyperemia. Myocardial perfusion defects, iden-
tified by hypoenhanced areas, can be reversible
(ischemia) or fixed (scar). If needed, a third non-
contrast scan can be added to confirm the presence of
scar (delayed-enhancement) attributed mainly to an
expansion in the extracellular volume, which has
been shown to predict clinical outcome in patients
with acute myocardial infarction (36,37). This
scan can be performed in a prospective mode using a
very low radiation dose. Nevertheless, chronic infarct
sizes evaluated by delayed-enhancement CT are
significantly smaller than those from matching CMR
(38). It is also worth mentioning that CT and magnetic
resonance, as opposed to SPECT, provide an evalu-
ating of transmural extension, with a potential
advantage for CT due to a lower contrast-to-noise
ratio (39).

In the past few years, there has been a growing in-
terest in the development of a noninvasive “1-stop
shop” tool that can evaluate in a single session both
coronary anatomy and the presence of ischemia. The
spectrum of patients who might be eligible for cardiac
CT might be widened by eventually including
patients who were formerly excluded from most pro-
tocols, such as patients outside of the borders of
intermediate CAD probability. Indeed, it is ex-
pected thatin the future, the order or extent of the scan
might be selected according to the pre-test CAD like-
lihood (anatomy [rest] only, anatomy with eventual
perfusion [rest plus stress], stress-perfusion, and
stress-perfusion plus delayed-enhancement). Actu-
ally, technical developments such as faster gantry
rotation speed and intracycle motion correction
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algorithms aid the attenuation of artifacts related to
high or irregular heart rates and, therefore, might lead
in the future to an accurate assessment of the coronary
tree with stress-only acquisitions, thus further saving
radiation dose (40). The issue of radiation is of utmost
importance when faced with other functional modal-
ities that do not require ionizing radiation, like stress
CMR and stress echocardiography, but in recent years,
several hardware (e.g., dual-source, high-volume
coverage, more powerful Roentgen tubes, dedicated
filters) and software (e.g., low Kv scanning, prospec-
tive ECG-gated scan protocols, iterative reconstruction
techniques) developments have led to an impressive
reduction in cardiac CT radiation dose (41).

One of the potential applications of CT-MPI is in
the triage of patients with acute chest pain. Rest
CT-MPI evaluated concurrently during routine car-
diac CT shows promise in detection of perfusion
defects in the presence of acute coronary occlusion
(42). In a recent study, Feuchtner et al. (18) were
able to demonstrate that the evaluation of rest
myocardial CT-MPI in patients presenting with acute
chest pain improved the accuracy of cardiac CT
compared with SPECT, mainly by reducing the rate
of false-positive findings. A recent study by Pursnani
et al. (43) showed that early rest CT-MPI provided
incremental value beyond obstructive CAD to detect
acute coronary syndromes. Furthermore, coronary
CTA plus rest CT-MPI was noninferior to coronary
CTA plus SPECT (43).

One of the main shortcomings of CT-MPI is tech-
nical issues, such as beam hardening artifacts (BHA),
which originate by the polychromatic nature of x-rays
and the energy dependency of x-ray attenuation.
These artifacts lead to a considerable myocardial
signal density drop at regions adjacent to highly
attenuated structures such as the sternum, spine,
or descending aorta, thus resembling perfusion
defects.

Dual-energy CT imaging has recently emerged as
an appealing tool for CT-MPI given the ability of this
technique to reduce BHA by the generation of syn-
thesized monochromatic image reconstruction. There
are currently 3 approaches to evaluate CT-MPI using
dual-energy CT. The most widely used consists of a
CT scanner equipped with 2 independent x-ray tubes
and a set of detectors at an angular offset of 90° to 94°
(depending on the generation), with 1 tube operating
at 80 or 100 kV and the other operating at 140 kV
(44,45). A second, more recent approach is based on
a CT scanner with a single x-ray tube capable of
ultrafast switching between 80 and 140 kV; therefore,
it might have the potential to overcome some limi-
tations of the former approach, such as increased
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FIGURE 1 Myocardial Perfusion Imaging by CT

Stress st

A 61-year-old man who was a previous smoker, had hypercholesterolemia, and had a body
mass index of 32 kg/m?. The patient had a history of established 3-vessel disease on previous
invasive coronary angiography and currently had stable angina. Stress (dipyridamole)
perfusion computed tomography (CT) (A) (mid-diastole 4- and 2-chamber multiplanar
reconstruction (MPR) using a smooth filter are shown) was performed in view of the high
pre-test coronary artery disease likelihood using conventional static CT-MPI protocol with a
256-detector scanner and demonstrated an extensive reversible perfusion defect at the
anterior-wall (*) and a mild subendocardial reversible perfusion defect at the inferior wall
(arrow). Single photon emission CT confirmed the findings (B). The patient was referred to
invasive coronary angiography (C), which showed 3-vessel disease with totally occluded
right coronary artery, critical lesion at the left anterior descending artery, and severe lesion
at the distal circumflex artery. MPI = myocardial perfusion imaging.
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scattered radiation and potential mismatch in the
projection views between high and low tube pro-
jections, when scanning moving objects such as the
heart (46,47). A third approach is the dual-layer
scanner consisting of 2 different scintillating mate-
rials fused together (sandwich). This application
permits higher-energy x-ray photons to pass through
the upper layer without having significant interac-
tion, whereas the lower energy photons are mostly
diminished in the top layer. The signals from the top
and from the base constitute the 2 different energy
ranges that have exactly the same projection (48). A
number of studies have reported the incremental
value of dual-energy stress CT-MPI over anatomic
evaluation alone for the detection of reversible
perfusion defects assessed by SPECT in patients
with intermediate to high CAD likelihood (44,46,49).
Moreover, another study showed improved diag-
nostic performance compared with conventional
single-energy CT-MPI imaging, which was mainly
attributed to the attenuation of BHA (50).

TRANSLUMINAL ATTENUATION GRADIENT
AND CORRECTED CORONARY OPACIFICATION

Impairment of flow due to significant coronary ste-
nosis is a phenomenon very well-studied with ICA,
and its extent is assessed with Thrombolysis In
Myocardial Infarction (TIMI) flow grades or corrected
TIMI frame counts (51). Cardiac CT allows for the
noninvasive assessment of coronary flow given the
presence of isotemporal differences in contrast den-
sities (i.e., contrast attenuation) between proximal
and distal portions of the coronaries, especially
evident in the presence of stenosis (52,53). For a given
coronary cross section, the mean luminal contrast
opacification in Hounsfield units (HU) is utilized, and
several approaches have been described (54). Of note,
contrast attenuation-based methods may be influ-
enced by the time-density curve of the intravascular
contrast agent and acquisition timing, as well as fac-
tors related to epicardial flow other than the presence
of stenosis, which should be taken into account when
assessing these measures (54,55). Unlike other func-
tional tests that involve pharmacological stress,
contrast attenuation is currently assessed only in a
resting state.

TRANSLUMINAL ATTENUATION GRADIENT. Transluminal
attenuation gradient (TAG) is the most studied
attenuation-based method for the assessment of
functional relevance of coronary stenosis (Figure 2). It
involves the reconstruction of cross sections perpen-
dicular to the centerline of the vessel at 5-mm in-
tervals from the ostium to the distal level, where the
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vessel cross-sectional area falls below 2.0 mm?. TAG is
defined as the linear regression coefficient between
luminal contrast attenuation (HU) and length from the
ostium (cm) (53). The intended use of TAG is to better
classify lesions in which the anatomic information is
nonconclusive. Accordingly, lesion severity and pla-
que characteristics (i.e., calcified, noncalcified, or
mixed) are integral components of the evaluation,
especially because TAG has been shown to have a
greater benefit in calcified lesions (56).

Current data are insufficient to recommend refer-
ence values for healthy arteries, and standard pro-
tocols for acquisition and interpretation may be
needed (57). Steigner et al. (53) studied 108 healthy
vessels from 36 patients using a 320-row multi-
detector computed tomography (MDCT) and showed
that TAG was lowest in the right coronary artery
(RCA) (—6.5 + 4.1 HU/cm) and was similar for the left
anterior descending artery and left circumflex artery
(LCx) (—13.7 + 8.0 HU/cm and -12.5 + 7.8 HU/cm,
respectively) (53). Cardiac phases correlated strongly
with TAG values in the RCA and LCx, whereas heart
rate showed a moderate correlation with those
observed in the LCx.

Cutoff values for determining the functional rele-
vance of coronary lesions have not been standardized
and are diverse, as reflected in Table 2 (55,56).
Nonetheless, TAG decreases consistently and signi-
ficantly with maximum stenosis severity on a
per-vessel basis, especially in vessels with calcified
lesions, as reported by Choi et al. (56) in a study
including 370 coronaries from 126 patients using a 64-
row MDCT scanner. Furthermore, the addition of TAG
to the interpretation of coronary CTA may improve
diagnostic accuracy, especially in the presence of
calcified plaques (56,58).

Validation of TAG at rest for the determination of
functionally significant stenosis using invasive
FFR <0.8 as areference has yielded conflicting results
(59,60). Interestingly, in a study including 253 vessels
from 85 patients evaluated with a 256-row MDCT,
TAG did not provide incremental diagnostic accuracy
over coronary CTA alone (61). However, after correc-
tion of temporal nonuniformity and exclusion of
calcified coronary segments, a slight improvement in
the net reclassification index was observed. More-
over, in a study assessing 127 vessels in 75 patients
using a 320-row MDCT scanner, the investigators
observed that in vessels without significant calcifi-
cation or artifacts, TAG plus coronary CTA provided a
comparable diagnostic accuracy when compared with
coronary CTA combined with CT-MPI, although the
sum of TAG + coronary CTA + CT-MPI offered the best
diagnostic accuracy (61).
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FIGURE 2 Representative Examples of TAG Measurements
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(A1) Calcified lesion in mid-left anterior descending artery that was indeterminate by coronary computed tomography angiography, but diameter
stenosis was 28.7% by quantitative invasive coronary angiography. Red arrows correspond to stenotic sites. (A2) The intraluminal attenuation in
distal left anterior descending artery does not decrease, demonstrating no significant obstruction. (A3) Cross-sectional views with gray border and
sloped legend in italics represent excluded intervals. (B) Severe stenosis is shown in both coronary computed tomography angiography and
invasive coronary angiography. It is confirmed in cross-sectional views. Gray dots in A2 and B2 represent intervals that were excluded because of
significant calcification or stenosis. Modified with permission from Choi et al. (56). DS = diameter stenosis; HU = Hounsfield units; MLD = minimum
lumen diameter; NG = nitroglycerin; QCA = quantitative coronary angiography; TAG = transluminal attenuation gradient.
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TABLE 1 Summarized Myocardial Perfusion Protocols

Static Stress MPI Dynamic Stress MPI

Scanner requirement

Acquisition mode

Contrast protocol

Image data

Effective dose

Output parameters

64-slice CT Second-generation
dual-source CT
Wide detector CT with complete

cardiac coverage

ECG-triggered axial scan mode
ECG-gated spiral scan mode

ECG-triggered shuttle mode
(dual-source CT)

Stationary ECG-triggered mode
(wide detector CT)

Short, high-rate bolus (=50 ml)

Sequence of low-resolution
datasets

5-10 mSv*

Myocardial blood flow
Myocardial blood volume

50-70 ml @ 4-5 ml/s
Single high-resolution dataset

1-5 mSv*

Attenuation values
Relative attenuation values

*Dose dependent on scanner technology and acquisition parameters.
CT = computed tomography; ECG = electrocardiogram; MPI = myocardial perfusion imaging.

CORRECTED CORONARY OPACIFICATION. CT scan-
ners that are not capable of acquiring the whole heart
in a single beat lack temporal uniformity for luminal
contrast assessment. This temporal misalignment
between subvolumes refers to differences in opacifi-
cation induced by temporal changes between acqui-
sitions of the superior versus inferior subvolumes. A
proposed method to overcome this limitation is cor-
rected contrast opacification (CCO), for which a quo-
tient of the mean intraluminal HU in a coronary
segment and the descending aorta in the same axial
plane is calculated. CCO is assessed by the analysis of
coronary CTA axial slices and calculates the quotient
in the intracoronary segment most proximal and most
distal to the stenosis. CCO is defined as the difference
between these 2 quotients (59).
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Although CCO has been shown to predict abnormal
resting blood flow (TIMI flow grade <3, as determined
with ICA) (62), its utility is still controversial because
it does not improve diagnostic performance of CTA
alone and available data are scarce (59). However, a
combination of CCO with TAG has been proposed,
yielding an improved discrimination of significant
lesions compared with TAG alone (61). Of note, in a
retrospective study including 106 patients treated
with prior stenting, CCO was associated with in-stent
restenosis severity in stents <3 mm in diameter (63).

FFR COMPUTED FROM CTA

Computational fluid dynamics (CFD), as applied to
cardiac CT images, is a novel method that enables
prediction of blood flow and pressure fields in coro-
nary arteries and calculation of lesion-specific FFR
(64-66). The FFR is computed from commonly ac-
quired MDCT scans (FFRcr) without any modification
of cardiac CT protocols, additional image acquisition,
or administration of medications.

The FFRcr technology is based on 3 key principles.
The first is that coronary supply meets myocardial
demand at rest (total resting coronary flow is relative
to ventricular mass). The second is that resistance of
the microcirculation at rest is inversely but not line-
arly proportional to the size of the feeding vessel. The
third principle is that microcirculation reacts pre-
dictably to maximal hyperemic conditions in patients
with normal coronary flow. On the basis of these
principles, a lumped parameter model representing
the resistance to flow during simulated hyperemia is
applied to each coronary branch of the segmented
coronary CTA model. The FFRcr was modeled for

TABLE 2 Studies Evaluating TAG for the Identification of Ischemic Lesions
Improved
First Author cT No. of Calcified Diagnostic Cutoffs Significant
Year (Ref. #) Generation Vessels (n) Lesions (%) Reference Accuracy and Components Se Sp PPV NPV NRI
2011 Choi et al. (56) 64 370 (126) 27 CAG =50% Yes =-1.80 HU/cm + DS =50% 84 94 9% 75 Yes
2012 Choi et al. (59) 64 97 (63) 32 FFR <0.80 Yes =-0.654 HU/mm + DS =50% 90 63 63 90 No
2012  Yoon et al. (60) 64 82 (53) 29 FFR =0.80 NA =-0.654 HU/mm 38 88 67 69 NA
2013  Wong et al. (55) 320 78 (54) 69 FFR =0.80 Yes =-15.1 HU/cm 77 74 67 83 Yes
2014  Zheng et al. (58) 64 309 (107) 37 CAG =50% Yes =-11.33 HU/cm + DS =50% 94 94 90 96 No
2014 Wong et al. (79) 320 97 (75) 39 FFR =0.80 Yes =-15.1 HU/cm + DS =50% 73 97 92 87 Yes
2014  Stuijfzand et al. (61) 256 225 (85) 34 FFR =0.80 No =-7.51 HU/cm 69 44 83 27 No
2015 Hell et al. (80) Dual- 72 (59) NA FFR =0.80 No =-0.65 HU/mm 57 61 28 31 NA
source
2015 Wang et al. (81) Dual- 32 (32) NA FFR <0.80 No =-1.51 HU/mm 37 58 23 73 NA
source
CAG = coronary angiography; DS = diameter stenosis; FFR = fractional flow reserve; HU = Hounsfield units; NA = not available; NPV = negative predictive value; NRI = net reclassification improvement;
PPV = positive predictive value; Se = sensitivity; Sp = specificity; TAG = transluminal attenuation gradient.
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FIGURE 3 Fractional Flow Reserve CT

S

Hyperemia

R,cro reduced to
simulate effect of adenosine

Pl + preW = =Vp + VoL
Ver=0

Standard coronary computed tomography angiography data are obtained. (A) The 5-year results following an Absorb implantation are shown. Arrowheads indicate the 2
metallic markers in the left anterior descending artery. Noncalcified plaque results in 62% area stenosis. (B) A quantitative 3-dimensional anatomic model is generated.
(C) A physiological model of the coronary microcirculation is derived from patient-specific data with 3 main principles: 1) resting coronary flow proportional to myocardial
mass; 2) microvascular resistance inversely proportional to vessel size; and 3) microvascular resistance reduced to simulate maximal hyperemia. (D) Physical laws of fluid
dynamics are applied to compute coronary blood flow. (E) Fractional flow reserve computed tomography (FFRcy) is calculated throughout the coronary arteries. (F) From
the proximal to the distal edge of the scaffold, the FFRct decreases from 0.88 to 0.80. Modified with permission from Garcia-Garcia et al. (78).

conditions of adenosine-induced hyperemia; an
FFRcr =0.80 was considered to be diagnostic of
lesion-specific ischemia (67) (Figure 3).

The most advanced FFR¢r is from HeartFlow
(Redwood City, California), and at present, there have
been 3 studies (67-69) using this technology (Table 3).
In all studies, FFRcr has been shown to be superior to
conventional cardiac CT and had good predictive ac-
curacies when compared with invasive FFR. Howev-
er, this technology requires processing on a powerful
remote computer for off-line analysis. The adjust-
ments of computational CT-based FFR algorithm by
reduced-order algorithm without the need for data
transfer have been developed to provide patient
management guidance within clinically viable time
frames (processing time <1 h). The feasibility of this

approach has been tested by 2 retrospective studies
using a software research prototype (Siemens cFFR,
version 1.4, Siemens Healthcare, Malvern, Pennsyl-
vania; currently not commercially available) (70,71).
With this technique, the mean total time for proces-
sing and flow computation was 51.9 + 9.0 min/study,
and there was a good direct correlation between CT-
based FFR and invasively derived FFR (Pearson’s
product-moment r = 0.74; p < 0.0001). The validity of
an on-site algorithm compared with that of coronary
CTA has been reported with an accuracy for cFFR (area
under the curve 0.83) over coronary CTA alone (area
under the curve 0.64).

Besides the dependence on a remote evaluation
(with time-delay and additional cost issues), FFRcr
is associated with 2 other limitations. The first is
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TABLE 3 Trials Comparing FFR-¢y (HeartFlow) and Invasive FFR

DISCOVER-FLOW (67) DeFACTO (68) NXT (69)

Publication year 20Mm 2012 2014
Patients profile, n Stable CAD, 103 Stable CAD, 252 Stable CAD, 254
Coronary CTA =50%—AUC 0.61 0.64 0.53
Coronary CTA =50%

Specificity 25% 42% 34%

Sensitivity 94% 84% 94%

PPV 58% 61% 40%

NPV 80% 72% 92%
FFRcr =0.80

AUC 0.87 0.73 0.81

Specificity 82% 54% 79%

Sensitivity 93% 90% 86%

PPV 85% 67% 65%

NPV 91% 84% 93%
Prevalence of FFR =0.80 56% 54% 42%
% patients excluded due NA 12% 13%

to nonevaluable scans

CT generation =64 detector row =64 detector row =64 detector row

Primary CT reading Core laboratory Core laboratory Local investigator
Software version NA 1.2 14

AUC, specificity, sensitivity, PPV, and NPV are for per-patient analysis.

AUC = area under the curve; CT = computed tomography; CTA = computed tomographic angiography;
DeFACTO = Determination of Fractional Flow Reserve by Anatomic Computed Tomographic Angiography;
DISCOVER-FLOW = Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve;
FFR = fractional flow reserve; NPV = negative predictive value; NXT = Analysis of Coronary Blood Flow Using CT
Angiography: Next Steps; PPV = positive predictive value.

the dependence on very high image quality. In the
published studies performed in experienced cardiac
CT centers, even after excluding patients with high
body mass index, atrial fibrillation, and previous
percutaneous coronary intervention or coronary artery
bypass graft, a significant percentage of patients (up to
13%) were not evaluable due to insufficient image
quality (Table 3). The other limitation is that infor-
mation about plaque burden is not considered for
the calculations, and recently, the relation between
atherosclerotic plaque features identified by coronary
CTA and the presence of ischemia has been underlined
(9,72).

EXTRAPOLATION FROM ATHEROSCLEROTIC
PLAQUE CHARACTERISTICS

Recently, the issue of whether functional informa-
tion can be extracted from the anatomic-based infor-
mation obtained with cardiac CT has been explored
further. In a study by Park et al. (72), the authors were
able to document an association between certain
atherosclerotic plaque characteristics (APCs), depicted
by coronary CTA (Figure 4, Table 4) and the presence of
ischemia by invasive FFR (72). In this study, 252 stable
patients without a previous revascularization proce-
dure were included and simultaneously evaluated by

JACC: CARDIOVASCULAR IMAGING, VOL. 8, NO. 11, 2015
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coronary CTA and ICA, with FFR as gold standard for
functional significance. Among the cardiac CT
obstructive (=50% stenosis) lesions, the authors found
that only one-half of them were functionally signifi-
cant by FFR, and the independent predictors of
ischemia were lesion length, positive remodeling
(index =1.1), and the presence of low attenuation
plaque (<30 HU). The presence of 2 or more of these
APCs was associated with a 13-fold increased odds of
ischemia by invasive FFR, and spotty calcification,
another APC evaluated, was not an independent pre-
dictor of ischemia. In another study including 58 pa-
tients with intermediate stenosis on coronary CTA
undergoing ICA with FFR, aggregate plaque volume,
reflecting the extent of coronary atherosclerotic
burden, was incremental to several luminal nar-
rowing measurements (diameter stenosis, area ste-
nosis, minimum luminal diameter, minimum lumen
area) to predict functional significance (FFR <0.80)
(9). In another small study evaluating 42 patients with
similar methodology, coronary CTA measurements of
area stenosis and lesion length were the strongest
determinants of an abnormal FFR (73).

The discordance between ischemia and stenosis has
been pointed out in several FFR studies. In a recent
prospective cohort of 1,000 patients evaluated simul-
taneously by ICA, IVUS, and FFR, up to 57% of the le-
sions with stenosis =50% had an FFR >0.80, and
conversely and more interesting, 16% of the non-
obstructive lesions were reversed mismatches,
because they were associated with FFR<0.80 (74). In
the coronary CTA study from Park et al. (72), the au-
thors also found a 17% rate of ischemia among non-
obstructive (<50% stenosis) lesions, which is
remarkable. The percentage of patients considered as
anatomy-function mismatches has to be interpreted in
view of the threshold for significant stenosis, and a
50% stenosis cutoff is not very ambitious and easily
leads to a significant subgroup of false-positive pa-
tients (without ischemia, despite the presence of a
“significant” stenosis). In this regard, their counter-
parts might be considered as “false negative” (with
ischemia, but without a significant stenosis), and
this subgroup of patients might explain the worse than
expected prognosis of patients with nonobstructive
CAD but high disease burden, which has been exten-
sively documented with calcium scoring (75) and has
also been recently demonstrated with the use of cor-
onary atherosclerotic burden scores (76,77). Bitten-
court et al. (76) evaluated 3,242 patients without
known CAD referred for coronary CTA and followed up
for a median of 3.6 years and demonstrated that dis-
ease extent (as assessed by the number of seg-
ments with extensive disease [defined as =5 segments
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FIGURE 4 Extrapolation From Atherosclerotic Plaque Characteristics

In the left panels (A: volume-rendering technique; B and C: multiplanar reconstructions), coronary computed tomography angiography depicting a mixed
plaque in the mid-segment of the left anterior descending artery (LAD) with intermediate stenosis (50% to 70%) and several features that have been
associated with the presence of ischemia and/or future events: spotty calcification (A and B), positive remodeling (B and C), and low attenuation plaque (C). In
the right panels, the corresponding invasive coronary angiography image (D) and the result of the fractional flow reserve (FFR), which was in the gray zone:
0.77 (E). The pink line in B represents the region depicted by the cross sectional image in C. The final clinical judgment was to proceed to revascularization, and
the patient was submitted to percutaneous coronary intervention. Pa = aortic pressure; Pd = distal coronary pressure across the stenosis.

with CAD]) has independent and incremental prog-

. o s . TABLE 4 Coronary CTA Plaque Characteristics Associated With Ischemia
nostic value for predicting cardiovascular death and Y <

myocardial infarction. In another recent study, Independent
. . Predictor of
Mushtagq et al. (77), using a more comprehensive CAD Plague Features Cutoff \schemia Ref. #
burden index—the CT-Leaman score (CT-LeSc) with R SR Per 5% s 7273)
information on lesion location, stenosis, and plaque Lesion length Per mm Yes (72,73)
composition—evaluated the prognostic effect of Positive remodeling >11 Yes (72)
atherosclerotic burden among 1,304 patients under- Low attenuation plague <30HU Yes (72)
going coronary CTA for suspected CAD and followed | SPotty caldfication <8 il B @2
Aggregate plaque volume, % per 5% Yes (9,72)

up for a mean of 52 months (77). The authors found
that event-free survival in nonobstructive (<50%
stenosis) CAD but high (>5) CT-LeSc was similar to

CTA = computed tomographic angiography; HU = Hounsfield units.
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CENTRAL ILLUSTRATION Functional Evaluation by Cardiac CT

MYOCARDIAL PERFUSION IMAGING

« Static Stress MPI: single high-resolution CT angiogram during
pharmacological vasodilation for semi-quantitative analyses

» Dynamic Stress MPI: sequence of low-resolution datasets
to calculate the absolute myocardial blood flow
from time-attenuation curves

« Additional contrast medium, pharmacological stress
and radiation

» Beam hardening artifacts

» Dynamic MPI requires wide detector coverage
and shuttle mode acquisition

« Limited experience and validation, and requires more radiation

CORONARY ATTENUATION PATTERNS

Transluminal Corrected
Attenuation Cororjary )
Gradient Opacification
(TAG) (Cco)

50%-70%

stenosis ~ CCO

Proximal

« TAG: linear regression coefficient between luminal contrast
attenuation (HU) and length from the ostium

« CCO: contrast opacification corrected for the descending
aorta in the same axial plane

« Lack of standardized cut-off values for functional significance

« Limited data and some conflicting results

CTA DERIVED FRACTIONAL FLOW RESERVE

S

R

AR
IS

» Computed using computational fluid dynamics
from regular CT angiograms without protocol modification
or additional medication

« Improved diagnostic accuracy vs CTA alone, mainly due
to higher specificity

« Remote evaluation

ATHEROSCLEROTIC PLAQUE CHARACTERISTICS

« Lesion length, low attenuation plaque, positive remodeling,
and aggregate plaque volume associated with ischemia
by invasive FFR

« Dependence on high image quality

« Spatial resolution

« Dependence on high image quality

« Low attenuation plaque cut-off influenced by several factors

de Aratjo Gongalves, P. et al. J Am Coll Cardiol Img. 2015; 8(11):1322-35.

This illustration depicts the main features and current limitations of 4 different lines developed in the search for functional information with cardiac CT. CCO = corrected
coronary opacification; CT = computed tomography; FFR = fractional flow reserve; MPI = myocardial perfusion imaging; TAG = transluminal attenuation gradients.
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obstructive CAD with high CT-LeSc but lower than
obstructive CAD with low CT-LeSc. These 2 studies
reinforce the concept that disease burden (either >5
segments with disease or a CT-LeSc >5) is an inde-
pendent long-term predictor of hard cardiac events
beyond stenosis severity and is in line with the results
of the studies linking APCs (72) and aggregate plaque
volume (9) with the presence of ischemia even
among (apparently) nonobstructive CAD lesions.

CONCLUSIONS

The discordance between ischemia and stenosis
that has been pointed out in several ICA and coronary
CTA studies and the central role that ischemia plays
in clinical decision making are both the main drivers
in the search for functional information in cardiac CT.
Several different lines have been reviewed in the

de Aratjo Gongalves et al.
Functional Evaluation of CAD by CTA

present paper, as shown in the Central Illustration, and
although some of these areas require additional soft-
ware and hardware refinements so that they can have
a more robust performance, the impressive develop-
ment of cardiac CT in recent years and its wide clinical
adoption leads us to believe that functional evalua-
tion of CAD by cardiac CT will certainly move from
research to a routine clinical tool in a near future.

Certain atherosclerotic plaque features, depicted
by coronary CTA, have recently emerged as possibly
related to the presence of ischemia and, more
importantly, might help to predict the future risk of
cardiovascular events.

REPRINT REQUESTS AND CORRESPONDENCE: Dr.
Hector M. Garcia-Garcia, Thoraxcenter-Erasmus Medi-
cal Center, z120 Dr Molerwaterplein 40, 3015 GD Rot-
terdam, the Netherlands. E-mail: hect2701@gmail.com.
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