175 research outputs found
Two-Dimensional Hydrodynamic Models of Super Star Clusters with a Positive Star Formation Feedback
Using the hydrodynamic code ZEUS, we perform 2D simulations to determine the
fate of the gas ejected by massive stars within super star clusters. It turns
out that the outcome depends mainly on the mass and radius of the cluster. In
the case of less massive clusters, a hot high velocity ( km
s) stationary wind develops and the metals injected by supernovae are
dispersed to large distances from the cluster. On the other hand, the density
of the thermalized ejecta within massive and compact clusters is sufficiently
large as to immediately provoke the onset of thermal instabilities. These
deplete, particularly in the central densest regions, the pressure and the
pressure gradient required to establish a stationary wind, and instead the
thermally unstable parcels of gas are rapidly compressed, by a plethora of
re-pressurizing shocks, into compact high density condensations. Most of these
are unable to leave the cluster volume and thus accumulate to eventually feed
further generations of star formation.
The simulations cover an important fraction of the parameter-space, which
allows us to estimate the fraction of the reinserted gas which accumulates
within the cluster and the fraction that leaves the cluster as a function of
the cluster mechanical luminosity, the cluster size and heating efficiency.Comment: Accepted for publication in ApJ; 27 pages, 9 figures, 1 tabl
Interaction of Infall and Winds in Young Stellar Objects
The interaction of a stellar or disk wind with a collapsing environment holds
promise for explaining a variety of outflow phenomena observed around young
stars. In this paper we present the first simulations of these interactions.
The focus here is on exploring how ram pressure balance between wind and
ambient gas and post-shock cooling affects the shape of the resulting outflows.
In our models we explore the role of ram pressure and cooling by holding the
wind speed constant and adjusting the ratio of the inflow mass flux to the wind
mass flux (Mdot_a/Mdot_w) Assuming non-spherical cloud collapse, we find that
relatively strong winds can carve out wide, conical outflow cavities and that
relatively weak winds can be strongly collimated into jet-like structures. If
the winds become weak enough, they can be cut off entirely by the infalling
environment. We identify discrepancies between results from standard snowplow
models and those presented here that have important implications for molecular
outflows. We also present mass vs. velocity curves for comparison with
observations.Comment: 35 pages, 11 figures (PNG and EPS
NICMOS Images of the GG Tau Circumbinary Disk
We present deep, near-infrared images of the circumbinary disk surrounding
the pre-main-sequence binary star, GG Tau A, obtained with NICMOS aboard the
Hubble Space Telescope. The spatially resolved proto-planetary disk scatters
roughly 1.5% of the stellar flux, with a near-to-far side flux ratio of ~1.4,
independent of wavelength, and colors that are comparable to the central
source; all of these properties are significantly different from the earlier
ground-based observations. New Monte Carlo scattering simulations of the disk
emphasize that the general properties of the disk, such as disk flux, near side
to far side flux ratio and integrated colors, can be approximately reproduced
using ISM-like dust grains, without the presence of either circumstellar disks
or large dust grains, as had previously been suggested. A single parameter
phase function is fitted to the observed azimuthal variation in disk flux,
providing a lower limit on the median grain size of 0.23 micron. Our analysis,
in comparison to previous simulations, shows that the major limitation to the
study of grain growth in T Tauri disk systems through scattered light lies in
the uncertain ISM dust grain properties. Finally, we use the 9 year baseline of
astrometric measurements of the binary to solve the complete orbit, assuming
that the binary is coplanar with the circumbinary ring. We find that the
estimated 1 sigma range on disk inner edge to semi-major axis ratio, 3.2 <
Rin/a < 6.7, is larger than that estimated by previous SPH simulations of
binary-disk interactions.Comment: 40 pages, 8 postscript figures, accepted for publication in Ap
Clustered Star Formation in W75 N
We present 2" to 7" resolution 3 mm continuum and CO(J=1-0) line emission and
near infrared Ks, H2, and [FeII] images toward the massive star forming region
W75 N. The CO emission uncovers a complex morphology of multiple, overlapping
outflows. A total flow mass of greater than 255 Msun extends 3 pc from
end-to-end and is being driven by at least four late to early-B protostars.
More than 10% of the molecular cloud has been accelerated to high velocities by
the molecular flows (> 5.2 km/s relative to v{LSR}) and the mechanical energy
in the outflowing gas is roughly half the gravitational binding energy of the
cloud. The W75 N cluster members represent a range of evolutionary stages, from
stars with no apparent circumstellar material to deeply embedded protostars
that are actively powering massive outflows. Nine cores of
millimeter-wavelength emission highlight the locations of embedded protostars
in W75 N. The total mass of gas & dust associated with the millimeter cores
ranges from 340 Msun to 11 Msun. The infrared reflection nebula and shocked H2
emission have multiple peaks and extensions which, again, suggests the presence
of several outflows. Diffuse H2 emission extends about 0.6 parsecs beyond the
outer boundaries of the CO emission while the [FeII] emission is only detected
close to the protostars. The infrared line emission morphology suggests that
only slow, non-dissociative J-type shocks exist throughout the pc-scale
outflows. Fast, dissociative shocks, common in jet-driven low-mass outflows,
are absent in W75 N. Thus, the energetics of the outflows from the late to
early B protostars in W75 N differ from their low-mass counterparts -- they do
not appear to be simply scaled-up versions of low-mass outflows.Comment: Astrophysical Journal, in press. 23 pages plus 10 figures (jpg
format). See http://www.aoc.nrao.edu/~dshepher/science.shtml for reprint with
full resolution figure
ROCker Models for Reliable Detection and Typing of Short-Read Sequences Carrying beta-Lactamase Genes
Identification of genes encoding beta-lactamases (BLs) from short-read sequences remains challenging due to the high frequency of shared amino acid functional domains and motifs in proteins encoded by BL genes and related non-BL gene sequences. Divergent BL homologs can be frequently missed during similarity searches, which has important practical consequences for monitoring antibiotic resistance. To address this limitation, we built ROCker models that targeted broad classes (e.g., class A, B, C, and D) and individual families (e.g., TEM) of BLs and challenged them with mock 150-bp- and 250-bp-read data sets of known composition. ROCker identifies most-discriminant bit score thresholds in sliding windows along the sequence of the target protein sequence and hence can account for nondiscriminative domains shared by unrelated proteins. BL ROCker models showed a 0% false-positive rate (FPR), a 0% to 4% false-negative rate (FNR), and an up-to-50-fold-higher F1 score [2 x precision x recall/(precision + recall)] compared to alternative methods, such as similarity searches using BLASTx with various e-value thresholds and BL hidden Markov models, or tools like DeepARG, ShortBRED, and AMRFinder. The ROCker models and the underlying protein sequence reference data sets and phylogenetic trees for read placement are freely available through http://enve-omics.ce.gatech.edu/data/rocker-bla. Application of these BL ROCker models to metagenomics, metatranscriptomics, and high-throughput PCR gene amplicon data should facilitate the reliable detection and quantification of BL variants encoded by environmental or clinical isolates and microbiomes and more accurate assessment of the associated public health risk, compared to the current practice. IMPORTANCE Resistance genes encoding beta-lactamases (BLs) confer resistance to the widely prescribed antibiotic class beta-lactams. Therefore, it is important to assess the prevalence of BL genes in clinical or environmental samples for monitoring the spreading of these genes into pathogens and estimating public health risk. However, detecting BLs in short-read sequence data is technically challenging. Our ROCker model-based bioinformatics approach showcases the reliable detection and typing of BLs in complex data sets and thus contributes toward solving an important problem in antibiotic resistance surveillance. The ROCker models developed substantially expand the toolbox for monitoring antibiotic resistance in clinical or environmental settings
The lower mass function of the young open cluster Blanco 1: from 30 Mjup to 3 Mo
We performed a deep wide field optical survey of the young (~100-150 Myr)
open cluster Blanco1 to study its low mass population well down into the brown
dwarf regime and estimate its mass function over the whole cluster mass
range.The survey covers 2.3 square degrees in the I and z-bands down to I ~ z ~
24 with the CFH12K camera. Considering two different cluster ages (100 and 150
Myr), we selected cluster member candidates on the basis of their location in
the (I,I-z) CMD relative to the isochrones, and estimated the contamination by
foreground late-type field dwarfs using statistical arguments, infrared
photometry and low-resolution optical spectroscopy. We find that our survey
should contain about 57% of the cluster members in the 0.03-0.6 Mo mass range,
including 30-40 brown dwarfs. The candidate's radial distribution presents
evidence that mass segregation has already occured in the cluster. We took it
into account to estimate the cluster mass function across the
stellar/substellar boundary. We find that, between 0.03Mo and 0.6Mo, the
cluster mass distribution does not depend much on its exact age, and is well
represented by a single power-law, with an index alpha=0.69 +/- 0.15. Over the
whole mass domain, from 0.03Mo to 3Mo, the mass function is better fitted by a
log-normal function with m0=0.36 +/- 0.07Mo and sigma=0.58 +/- 0.06. Comparison
between the Blanco1 mass function, other young open clusters' MF, and the
galactic disc MF suggests that the IMF, from the substellar domain to the
higher mass part, does not depend much on initial conditions. We discuss the
implications of this result on theories developed to date to explain the origin
of the mass distribution.Comment: 18 pages, 15 figures and 5 tables accepted in A&
Simulating the formation of molecular clouds. II. Rapid formation from turbulent initial conditions
(Abridged). In this paper, we present results from a large set of numerical
simulations that demonstrate that H2 formation occurs rapidly in turbulent gas.
Starting with purely atomic hydrogen, large quantities of molecular hydrogen
can be produced on timescales of 1 -- 2 Myr, given turbulent velocity
dispersions and magnetic field strengths consistent with observations.
Moreover, as our simulations underestimate the effectiveness of H2
self-shielding and dust absorption, we can be confident that the molecular
fractions that we compute are strong lower limits on the true values. The
formation of large quantities of H2 on the timescale required by rapid cloud
formation models therefore appears to be entirely plausible.
We also investigate the density and temperature distributions of gas in our
model clouds. We show that the density probability distribution function is
approximately log-normal, with a dispersion that agrees well with the
prediction of Padoan, Nordlund & Jones (1997). The temperature distribution is
similar to that of a polytrope, with an effective polytropic index gamma_eff
\simeq 0.8, although at low gas densities, the scatter of the actual gas
temperature around this mean value is considerable, and the polytropic
approximation does not capture the full range of behaviour of the gas.Comment: 66 pages, 34 figures, AASTex. Minor revisions to match version
accepted by Ap
Pramosio e Avostanis
Vengono descritti gli aspetti geologici, paleontologici, mineralogici e naturalistici dellìarea di Pramosio-Avostanis nelle Alpi Carnich
Highly Collimated Molecular Hydrogen Jets Near IRAS 05487+0255: NIR Imaging and Spectroscopy
We present new narrow-band near-infrared images together with K band spectra
of highly collimated bipolar jets close to the IRAS 05487+0255 source. The jets
are located at 50" West of the Herbig-Haro 110 outflow. The jets are not
visible at optical wavelengths, and therefore, do not fall into the `standard'
Herbig-Haro object classification scheme. Nevertheless, they belong to an ever
growing group of molecular hydrogen jets associated with YSOs which are
optically undetected. The jets are very well collimated, with a length-to-width
ratio of 10-20. The spectra of the jet and counter-jet in the K-band show a
limited number of molecular hydrogen emission lines which makes it difficult to
obtain an accurate excitation temperature. We estimate Tex = 1104+/-67 K and
Tex = 920+/- 156 K for the red and blue jet components respectively. The radial
velocities of the jet and counter-jet, based on the shift of the (1,0) S(1)
2.121 micron line, are -275+/- 50 km/s and 180+/- 50 km/s respectively,
suggesting an angle of 30 to 45 degrees between the jet and the line of sight.
The molecular hydrogen emission of the entire jet extends for at least 40" or
0.1 pc at the distance of Orion. If the flow velocity is comparable to that of
the radial velocities, then the dynamical age of the system is quite short
(about 500 yrs), consistent with a young jet arising from an embedded source.
Entrainment in a turbulent mixing layer may explain this morphology and
spectral character.Comment: 15 pages, 5 postscript figures, Accepted to the Ap
- …