532 research outputs found
Recommended from our members
Effect of Stimulus Orientation on Visual Function in Children with Refractive Amblyopia.
Purpose: We investigated and characterized the patterns of meridional anisotropies in newly diagnosed refractive amblyopes using pattern onset–offset visual evoked potentials (POVEPs) and psychophysical grating acuity (GA).
Methods: Twenty-five refractive amblyopes were recruited and compared with non-amblyopic controls from our previous study. Monocular POVEPs were recorded in response to sinewave 4 cycles per degree (cpd) grating stimuli oriented along each individual participants' principal astigmatic meridians, which were approximately horizontal (meridian 1) and vertical (meridian 2). Binocular POVEPs in response to the same stimuli, but oriented at 45°, 90°, 135°, and 180°, were recorded. Psychophysical GAs were assessed along the same meridians using a two-alternative non-forced-choice technique. The C3 amplitudes and peak latencies of the POVEPs and GAs were compared across meridians for both groups (refractive amblyopes and controls) using linear mixed models (monocular) and ANOVA (binocular), and post hoc analysis was conducted to determine if meridional anisotropies in this cohort of amblyopes were related to low (≤1.50 diopters [D]), moderate (1.75–2.75 D) and high (≥3.00 D) astigmatism.
Results: In the newly diagnosed refractive amblyopes, there were no significant meridional anisotropies across all outcome measures, but the post hoc analysis demonstrated that C3 amplitude was significantly higher in those with low (P = 0.02) and moderate (P = 0.004) astigmatism compared to those with high astigmatism. Refractive amblyopes had poorer GA and C3 amplitudes compared to controls by approximately two lines on the logMAR chart (monocular: P = 0.013; binocular: P = 0.014) and approximately 6 µV (monocular: P = 0.009; binocular: P = 0.027), respectively.
Conclusions: Deleterious effects of high astigmatism was evident in newly diagnosed refractive amblyopes, but the neural deficits do not seem to be orientation-specific for the stimulus parameters investigated
Recommended from our members
Electrophysiological and Psychophysical Studies of Meridional Anisotropies in Children With and Without Astigmatism.
Purpose: We investigated the pattern of meridional anisotropies, if any, for pattern onset-offset visual evoked potential (POVEPs) responses and psychophysical grating acuity (GA) in children with normal letter visual acuity (20/20 or better).
Methods: A total of 29 children (aged 3-9 years), nine of whom were astigmatic (AS), were recruited. Orientation-specific monocular POVEPs were recorded in response to sinewave grating stimuli oriented along the subjects' principal AS meridians. Horizontal and vertical gratings were designated Meridians 1 and 2, respectively, for nonastigmatic patients (Non-AS). Binocular POVEPs in response to the same stimuli, but oriented at 45°, 90°, 135°, and 180°, were recorded. Psychophysical GAs were assessed monocularly and binocularly along the same meridians using the same stimuli by a 2-alternative-forced-choice staircase technique. The C3 amplitudes and peak latencies of the POVEP and GAs were compared across meridians using linear mixed models (monocular) and ANOVA (binocular).
Results: There were significant meridional anisotropies in monocular C3 amplitudes regardless of astigmatism status (P = 0.001): Meridian 2 (mean ± SE Non-AS, 30.13 ± 2.07 μV; AS, 26.53 ± 2.98 μV) was significantly higher than Meridian 1 (Non-AS, 26.14 ± 1.87 μV; AS, 21.68 ± 2.73 μV; P = 0.019), but no meridional anisotropies were found for GA or C3 latency. Binocular C3 amplitude in response to horizontally oriented stimuli (180°, 29.71 ± 3.06 μV) was significantly lower than the oblique (45°, 36.62 ± 3 .05 μV; P = 0.03 and 135°, 35.95 ± 2.92 μV; P = 0.04) and vertical (90°, 37.82 ± 3.65 μV; P = 0.02) meridians, and binocular C3 latency was significantly shorter in response to vertical than oblique gratings (P ≤ 0.001).
Conclusions: Meridional anisotropy was observed in children with normal vision. The findings suggest that horizontal gratings result in a small, but significantly lower POVEP amplitude than for vertical and oblique gratings
An Experimental Platform for Pulsed-Power Driven Magnetic Reconnection
We describe a versatile pulsed-power driven platform for magnetic
reconnection experiments, based on exploding wire arrays driven in parallel
[Suttle, L. G. et al. PRL, 116, 225001]. This platform produces inherently
magnetised plasma flows for the duration of the generator current pulse (250
ns), resulting in a long-lasting reconnection layer. The layer exists for long
enough to allow evolution of complex processes such as plasmoid formation and
movement to be diagnosed by a suite of high spatial and temporal resolution
laser-based diagnostics. We can access a wide range of magnetic reconnection
regimes by changing the wire material or moving the electrodes inside the wire
arrays. We present results with aluminium and carbon wires, in which the
parameters of the inflows and the layer which forms are significantly
different. By moving the electrodes inside the wire arrays, we change how
strongly the inflows are driven. This enables us to study both symmetric
reconnection in a range of different regimes, and asymmetric reconnection.Comment: 14 pages, 9 figures. Version revised to include referee's comments.
Submitted to Physics of Plasma
Formation and Structure of a Current Sheet in Pulsed-Power Driven Magnetic Reconnection Experiments
We describe magnetic reconnection experiments using a new, pulsed-power
driven experimental platform in which the inflows are super-sonic but
sub-Alfv\'enic.The intrinsically magnetised plasma flows are long lasting,
producing a well-defined reconnection layer that persists over many
hydrodynamic time scales.The layer is diagnosed using a suite of high
resolution laser based diagnostics which provide measurements of the electron
density, reconnecting magnetic field, inflow and outflow velocities and the
electron and ion temperatures.Using these measurements we observe a balance
between the power flow into and out of the layer, and we find that the heating
rates for the electrons and ions are significantly in excess of the classical
predictions. The formation of plasmoids is observed in laser interferometry and
optical self-emission, and the magnetic O-point structure of these plasmoids is
confirmed using magnetic probes.Comment: 14 pages, 12 figures. Accepted for publication in Physics of Plasma
Cooling and Instabilities in Colliding Radiative Flows with Toroidal Magnetic Fields
We report on the results of a simulation based study of colliding magnetized
plasma flows. Our set-up mimics pulsed power laboratory astrophysical
experiments but, with an appropriate frame change, are relevant to
astrophysical jets with internal velocity variations. We track the evolution of
the interaction region where the two flows collide. Cooling via radiative loses
are included in the calculation. We systematically vary plasma beta ()
in the flows, the strength of the cooling () and the exponent
() of temperature-dependence of the cooling function. We find that for
strong magnetic fields a counter-propagating jet called a "spine" is driven by
pressure from shocked toroidal fields. The spines eventually become unstable
and break apart. We demonstrate how formation and evolution of the spines
depends on initial flow parameters and provide a simple analytic model that
captures the basic features of the flow.Comment: 14 pages, 16 figures. Submitted to MNRA
Morphology of Shocked Lateral Outflows in Colliding Hydrodynamic Flows
Supersonic interacting flows occurring in phenomena such as protostellar jets
give rise to strong shocks, and have been demonstrated in several laboratory
experiments. To study such colliding flows, we use the AstroBEAR AMR code to
conduct hydrodynamic simulations in three dimensions. We introduce variations
in the flow parameters of density, velocity, and cross sectional radius of the
colliding flows %radius in order to study the propagation and conical shape of
the bow shock formed by collisions between two, not necessarily symmetric,
hypersonic flows. We find that the motion of the interaction region is driven
by imbalances in ram pressure between the two flows, while the conical
structure of the bow shock is a result of shocked lateral outflows (SLOs) being
deflected from the horizontal when the flows are of differing cross-section
Radiative cooling effects on reverse shocks formed by magnetised supersonic plasma flows
We study the structure of reverse shocks formed by the collision of
supersonic, magnetised plasma flows driven by an inverse (or exploding) wire
array with a planar conducting obstacle. We observe that the structure of these
reverse shocks varies dramatically with wire material, despite the similar
upstream flow velocities and mass densities. For aluminium wire arrays, the
shock is sharp and well defined, consistent with magneto-hydrodynamic theory.
In contrast, we do not observe a well-defined shock using tungsten wires,
instead, we see a broad region dominated by density fluctuations on a wide
range of spatial scales. We diagnose these two very different interactions
using interferometry, Thomson scattering, shadowgraphy, and a newly developed
imaging refractometer which is sensitive to small deflections of the probing
laser corresponding to small-scale density perturbations. We conclude that the
differences in shock structure are most likely due to radiative cooling
instabilities which create small-scale density perturbations elongated along
magnetic field lines in the tungsten plasma. These instabilities grow more
slowly and are smoothed by thermal conduction in the aluminium plasma
Formation and structure of a current sheet in pulsed-power driven magnetic reconnection experiments
We describe magnetic reconnection experiments using a new, pulsed-power driven experimental platform in which the inflows are super-sonic but sub-Alfvénic. The intrinsically magnetised plasma flows are long lasting, producing a well-defined reconnection layer that persists over many hydrodynamic time scales. The layer is diagnosed using a suite of high resolution laser based diagnostics, which provide measurements of the electron density, reconnecting magnetic field, inflow and outflow velocities, and the electron and ion temperatures. Using these measurements, we observe a balance between the power flow into and out of the layer, and we find that the heating rates for the electrons and ions are significantly in excess of the classical predictions. The formation of plasmoids is observed in laser interferometry and optical self-emission, and the magnetic O-point structure of these plasmoids is confirmed using magnetic probes.Engineering and Physical Sciences Research Council (Grant EP/N013379/1)United States. Department of Energy (Awards DE-F03-02NA00057)United States. Department of Energy (Awards DE-SC-0001063)National Science Foundation (U.S.) (Award DE-sc0016215
- …