30 research outputs found
Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress
In Alzheimer’s disease (AD), different types of neurons and different brain areas show differential patterns of vulnerability towards neurofibrillary degeneration, which provides the basis for a highly predictive profile of disease progression throughout the brain that now is widely accepted for neuropathological staging. In previous studies we could demonstrate that in AD cortical and subcortical neurons are constantly less frequently affected by neurofibrillary degeneration if they are enwrapped by a specialized form of the hyaluronan-based extracellular matrix (ECM), the so called ‘perineuronal net’ (PN). PNs are basically composed of large aggregating chondroitin sulphate proteoglycans connected to a hyaluronan backbone, stabilized by link proteins and cross-linked via tenascin-R (TN-R). Under experimental conditions in mice, PN-ensheathed neurons are better protected against iron-induced neurodegeneration than neurons without PN. Still, it remains unclear whether these neuroprotective effects are directly mediated by the PNs or are associated with some other mechanism in these neurons unrelated to PNs. To identify molecular components that essentially mediate the neuroprotective aspect on PN-ensheathed neurons, we comparatively analysed neuronal degeneration induced by a single injection of FeCl3 on four different mice knockout strains, each being deficient for a different component of PNs. Aggrecan, link protein and TN-R were identified to be essential for the neuroprotective properties of PN, whereas the contribution of brevican was negligible. Our findings indicate that the protection of PN-ensheathed neurons is directly mediated by the net structure and that both the high negative charge and the correct interaction of net components are essential for their neuroprotective function
Hook proteins: association with Alzheimer pathology and regulatory role of Hook3 inAmyloid beta generation
Defects in intracellular transport are implicated in the pathogenesis of Alzheimer’s disease (AD). Hook proteins are a family of cytoplasmic linker proteins that participate in endosomal transport. In this study we show that Hook1 and Hook3 are expressed in neurons while Hook2 is predominantly expressed in astrocytes. Furthermore, Hook proteins are associated with pathological hallmarks in AD; Hook1 and Hook3 are localized to tau aggregates and Hook2 to glial components within amyloid plaques. Additionally, the expression of Hook3 is reduced in AD. Modelling of Hook3 deficiency in cultured cells leads to slowing of endosomal transport and increases β-amyloid production. We propose that Hook3 plays a role in pathogenic events exacerbating AD
Prenatal treatment with rosiglitazone attenuates vascular remodeling and pulmonary monocyte influx in experimental congenital diaphragmatic hernia
Publication history: Accepted - 23 October 2018; Published online - 12 November 2018.Introduction
Extensive vascular remodeling causing pulmonary hypertension (PH) represents a major cause of mortality in patients with congenital diaphragmatic hernia (CDH). The chemokine monocyte chemoattractant protein-1 (MCP-1) is a biomarker for the severity of PH and its activation is accompanied by pulmonary influx of monocytes and extensive vascular remodeling. MCP-1 activation can be reversed by application of rosiglitazone (thiazolidinedione). We performed this study to evaluate the role of MCP-1 for the pathogenesis of PH in experimental CDH. We hypothesized that vascular remodeling and MCP-1 activation is accompanied by pulmonary influx of fetal monocytes and can be attenuated by prenatal treatment with rosiglitazone.
Methods
In a first set of experiments pregnant rats were treated with either nitrofen or vehicle on gestational day 9 (D9). Fetal lungs were harvested on D21 and divided into CDH and control. Quantitative real-time polymerase chain reaction, Western blot (WB), and immunohistochemistry (IHC) were used to evaluate MCP-1 expression, activation, and localization. Quantification and localization of pulmonary monocytes/macrophages were carried out by IHC.
In a second set of experiments nitrofen-exposed dams were randomly assigned to prenatal treatment with rosiglitazone or placebo on D18+D19. Fetal lungs were harvested on D21, divided into control, CDH+rosiglitazone, and CDH+placebo and evaluated by WB as well as IHC.
Results
Increased thickness of pulmonary arteries of CDH fetuses was accompanied by increased systemic and perivascular MCP-1 protein expression and significantly higher amounts of pulmonary monocytes/macrophages compared to controls (p<0.01). These effects were reversed by prenatal treatment with rosiglitazone (p<0.01 vs. CDH+P; control).
Conclusion
Prenatal treatment with rosiglitazone has the potential to attenuate activation of pulmonary MCP-1, pulmonary monocyte influx, and vascular remodeling in experimental CDH. These results provide a basis for future research on prenatal immunomodulation as a novel treatment strategy to decrease secondary effects of PH in CDH.This work was supported by Children’s Medical & Research Foundation, Dublin, Ireland, https://cmrf.org/, Senior Research Fellowship JG, awarded to JG; German Research Foundation and Leipzig University within the program of Open Access Publishing, awarded to JG, https://www.ub.uni-leipzig.de/open-science/publikationsfonds/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress
In Alzheimer’s disease (AD), different types of neurons and different brain areas show differential patterns of vulnerability towards neurofibrillary degeneration, which provides the basis for a highly predictive profile of disease progression throughout the brain that now is widely accepted for neuropathological staging. In previous studies we could demonstrate that in AD cortical and subcortical neurons are constantly less frequently affected by neurofibrillary degeneration if they are enwrapped by a specialized form of the hyaluronan-based extracellular matrix (ECM), the so called ‘perineuronal net’ (PN). PNs are basically composed of large aggregating chondroitin sulphate proteoglycans connected to a hyaluronan backbone, stabilized by link proteins and cross-linked via tenascin-R (TN-R). Under experimental conditions in mice, PN-ensheathed neurons are better protected against iron-induced neurodegeneration than neurons without PN. Still, it remains unclear whether these neuroprotective effects are directly mediated by the PNs or are associated with some other mechanism in these neurons unrelated to PNs. To identify molecular components that essentially mediate the neuroprotective aspect on PN-ensheathed neurons, we comparatively analysed neuronal degeneration induced by a single injection of FeCl3 on four different mice knockout strains, each being deficient for a different component of PNs. Aggrecan, link protein and TN-R were identified to be essential for the neuroprotective properties of PN, whereas the contribution of brevican was negligible. Our findings indicate that the protection of PN-ensheathed neurons is directly mediated by the net structure and that both the high negative charge and the correct interaction of net components are essential for their neuroprotective function
Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress
In Alzheimer’s disease (AD), different types of neurons and different brain areas show differential patterns of vulnerability towards neurofibrillary degeneration, which provides the basis for a highly predictive profile of disease progression throughout the brain that now is widely accepted for neuropathological staging. In previous studies we could demonstrate that in AD cortical and subcortical neurons are constantly less frequently affected by neurofibrillary degeneration if they are enwrapped by a specialized form of the hyaluronan-based extracellular matrix (ECM), the so called ‘perineuronal net’ (PN). PNs are basically composed of large aggregating chondroitin sulphate proteoglycans connected to a hyaluronan backbone, stabilized by link proteins and cross-linked via tenascin-R (TN-R). Under experimental conditions in mice, PN-ensheathed neurons are better protected against iron-induced neurodegeneration than neurons without PN. Still, it remains unclear whether these neuroprotective effects are directly mediated by the PNs or are associated with some other mechanism in these neurons unrelated to PNs. To identify molecular components that essentially mediate the neuroprotective aspect on PN-ensheathed neurons, we comparatively analysed neuronal degeneration induced by a single injection of FeCl3 on four different mice knockout strains, each being deficient for a different component of PNs. Aggrecan, link protein and TN-R were identified to be essential for the neuroprotective properties of PN, whereas the contribution of brevican was negligible. Our findings indicate that the protection of PN-ensheathed neurons is directly mediated by the net structure and that both the high negative charge and the correct interaction of net components are essential for their neuroprotective function
CHL1 and NrCAM are primarily expressed in low grade pediatric neuroblastoma
Neural cell adhesion molecules like close homolog of L1 protein (CHL1) and neuronal glia related cell adhesion molecule (NrCAM) play an important role in development and regeneration of the central nervous system. However, they are also associated with cancerogenesis and progression in adult malignancies, thus gain increasing importance in cancer research. We therefore studied the expression of CHL1 and NrCAM according to the course of disease in children with neuroblastoma
Hook proteins: association with Alzheimer pathology and regulatory role of Hook3 inAmyloid beta generation
Defects in intracellular transport are implicated in the pathogenesis of Alzheimer’s disease (AD). Hook proteins are a family of cytoplasmic linker proteins that participate in endosomal transport. In this study we show that Hook1 and Hook3 are expressed in neurons while Hook2 is predominantly expressed in astrocytes. Furthermore, Hook proteins are associated with pathological hallmarks in AD; Hook1 and Hook3 are localized to tau aggregates and Hook2 to glial components within amyloid plaques. Additionally, the expression of Hook3 is reduced in AD. Modelling of Hook3 deficiency in cultured cells leads to slowing of endosomal transport and increases β-amyloid production. We propose that Hook3 plays a role in pathogenic events exacerbating AD
Hook proteins: association with Alzheimer pathology and regulatory role of hook3 in amyloid beta generation.
Defects in intracellular transport are implicated in the pathogenesis of Alzheimer's disease (AD). Hook proteins are a family of cytoplasmic linker proteins that participate in endosomal transport. In this study we show that Hook1 and Hook3 are expressed in neurons while Hook2 is predominantly expressed in astrocytes. Furthermore, Hook proteins are associated with pathological hallmarks in AD; Hook1 and Hook3 are localized to tau aggregates and Hook2 to glial components within amyloid plaques. Additionally, the expression of Hook3 is reduced in AD. Modelling of Hook3 deficiency in cultured cells leads to slowing of endosomal transport and increases β-amyloid production. We propose that Hook3 plays a role in pathogenic events exacerbating AD
Hook proteins: association with Alzheimer pathology and regulatory role of Hook3 inAmyloid beta generation
Defects in intracellular transport are implicated in the pathogenesis of Alzheimer’s disease (AD). Hook proteins are a family of cytoplasmic linker proteins that participate in endosomal transport. In this study we show that Hook1 and Hook3 are expressed in neurons while Hook2 is predominantly expressed in astrocytes. Furthermore, Hook proteins are associated with pathological hallmarks in AD; Hook1 and Hook3 are localized to tau aggregates and Hook2 to glial components within amyloid plaques. Additionally, the expression of Hook3 is reduced in AD. Modelling of Hook3 deficiency in cultured cells leads to slowing of endosomal transport and increases β-amyloid production. We propose that Hook3 plays a role in pathogenic events exacerbating AD