94 research outputs found

    Norbornene chaotropic salts as low molecular mass ionic organogelators (LMIOGs)

    Get PDF
    Phenylalanine functionalised norbornene (9:Na) functions as a potent, low molecular-mass (MW = 333 Da) ionic organogelator with a minimum gelating concentration of 0.5 wt% in THF, i-PrOH, 1,4-dioxane and n-BuOH. Fibrous crystals form in the gel and X-ray crystallography identified a cation mediated helical assembly process controlled by the chirality of the phenylalanine. In additon to excellent gelating properties 9:Na readily forms aqueous biphasic and triphasic systems

    Metal ion type significantly affects the morphology but not the activity of lipase-metal-phosphate nanoflowers

    Full text link
    Enzyme–metal-ion–phosphate nanoflowers are high-surface area materials which are known to show higher activity than the constituting protein. Although the synthesis of hybrid nanoflowers has been demonstrated with a variety of proteins and reaction conditions, only di-valent metal ions have been tested to date. We expand on previous findings by testing a range of metal ions of different valence in co-presence with lipase from Burkholderia cepacia: Ag(I), Fe(II), Cu(II), Au(III). All metal ions produced colour precipitates, although the type of metal caused different precipitate morphologies under comparable reaction conditions: from nanoflowers to forests of nano-plates and crystal-like precipitates. In contrast, the type of metal ion did not appear to significantly affect the product\u27s specific enzyme activity, which remained greater than that of free lipase. This indicates that the type of metal ion and the macroscopic arrangement of the petals play a secondary role to that of the co-presence of the metal and phosphate ions in determining lipase nanoflower activity. The demonstrated ability to produce metal–phosphate-protein nanoflowers with a selection of different metals also opens the way to producing a wider range of functional, nanostructured, materials

    B2-Lymphocyte responses to oxidative stress-derived antigens contribute to the evolution of nonalcoholic fatty liver disease (NAFLD).

    Get PDF
    Recent evidence implicates adaptive immunity as a key player in the mechanisms supporting hepatic inflammation during the progression of nonalcoholic fatty liver disease (NAFLD). In these settings, patients with NAFLD often show an increase in the circulating levels of antibodies against oxidative stress-derived epitopes (OSE). Nonetheless, the actual role of humoral immunity in NAFLD is still unclear. This study investigates the contribution of B-lymphocytes to NAFLD evolution. B-lymphocyte immunostaining of liver biopsies from NAFLD patients showed that B-cells were evident within cell aggregates rich in T-lymphocytes. In these subjects, B/T-lymphocyte infiltration positively correlated with both circulating IgG targeting oxidative stress-derived epitopes (OSE) and interferon-γ (IFN-γ) levels. Furthermore, high prevalence of lymphocyte aggregates identified patients with more severe lobular inflammation and fibrosis. In mouse models of NAFLD, the onset of steatohepatitis was characterized by hepatic B2-lymphocytes maturation to plasma cells and by an elevation in circulating anti-OSE IgG titers. B-cell responses preceded T-cell activation and were accompanied by the up-regulation in the hepatic expression of B-cell Activating Factor (BAFF). Selective B2-cell depletion in mice over-expressing a soluble form of the BAFF/APRIL receptor Transmembrane Activator and Cyclophilin Ligand Interactor (TACI-Ig) prevented plasma cell maturation and Th-1 activation of liver CD4 <sup>+</sup> T-lymphocytes. Furthermore, TACI-Ig mice showed milder steatohepatitis and a decreased progression to fibrosis. Similarly, mice treatment with the BAFF-neutralizing monoclonal antibody Sandy-2 prevented hepatic B2-cell responses and ameliorated steatohepatitis. From these data we conclude that B2-lymphocyte activation is an early event in NAFLD evolution and contributes to the disease progression through the interaction with T-cells. Furthermore, combined clinical and experimental data suggest that elevated circulating anti-OSE IgG can identify a subset of NAFLD patients in whom adaptive immunity has a relevant role in the disease evolution toward fibrosis

    Seamount Observatory and SAMOC Overturning, Cruise No. MSM60, January 04 - February 01, 2017, Cape Town (South Africa) - Montevideo (Uruguay)

    Get PDF
    The scientific program of the MARIA S. MERIAN MSM60 expedition was the first basin-wide section across the South Atlantic following the SAMBA/SAMOC line at 34°30'S. The scientific program consisted of full water depth sampling (up to 5300m) using the CTD/O2/lADCP rosette system. The water samples have been analysed on board for oxygen, dissolved inorganic carbon, alkalinity, salinity, CFC12, and SF6. In addition samples have been taken for later analysis of nutrients, chlorophyll structure (HPLC), POC, and nitrogen isotope analysis. The sampling and measurements where performed against highest standards defined in the GO-SHIP cruise recommendations (http://www.go-ship.org/). An Underwater Vision Profiler (UVP) was mounted on the CTD for full depth particle photography. Underway measurements included hull mounted ADCPs (75kHz and 38kHz) and high resolution (11nm) XBT probes. The data will be analysed for multiple purposes including calculation of the meridional volume, heat, and freshwater transport across the SAMBA/SAMOC line. The biogeochemical data will be compared to historical data acquired at neighbouring sections, e.g. along the WOCE/GO-SHIP A10 section (30°S) occupied by RV Meteor in 1993 as part of the WOCE program. The MSM60 expedition is a contribution to the EU H-2020 AtlantOS project

    First international descriptive and interventional survey for cholesterol and non-cholesterol sterol determination by gas- and liquid- chromatography–Urgent need for harmonisation of analytical methods

    Get PDF
    Serum concentrations of lathosterol, the plant sterols campesterol and sitosterol and the cholesterol metabolite 5α-cholestanol are widely used as surrogate markers of cholesterol synthesis and absorption, respectively. Increasing numbers of laboratories utilize a broad spectrum of well-established and recently developed methods for the determination of cholesterol and non-cholesterol sterols (NCS). In order to evaluate the quality of these measurements and to identify possible sources of analytical errors our group initiated the first international survey for cholesterol and NCS. The cholesterol and NCS survey was structured as a two-part survey which took place in the years 2013 and 2014. The first survey part was designed as descriptive, providing information about the variation of reported results from different laboratories. A set of two lyophilized pooled sera (A and B) was sent to twenty laboratories specialized in chromatographic lipid analysis. The different sterols were quantified either by gas chromatography-flame ionization detection, gas chromatography- or liquid chromatography-mass selective detection. The participants were requested to determine cholesterol and NCS concentrations in the provided samples as part of their normal laboratory routine. The second part was designed as interventional survey. Twenty-two laboratories agreed to participate and received again two different lyophilized pooled sera (C and D). In contrast to the first international survey, each participant received standard stock solutions with defined concentrations of cholesterol and NCS. The participants were requested to use diluted calibration solutions from the provided standard stock solutions for quantification of cholesterol and NCS. In both surveys, each laboratory used its own internal standard (5α-cholestane, epicoprostanol or deuterium labelled sterols). Main outcome of the survey was, that unacceptably high interlaboratory variations for cholesterol and NCS concentrations are reported, even when the individual laboratories used the same calibration material. We discuss different sources of errors and recommend all laboratories analysing cholesterol and NCS to participate in regular quality control programs

    Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology

    Full text link
    corecore