15 research outputs found

    Pediatric urolithiasis: causative factors, diagnosis and medical management

    No full text
    Childhood urolithiasis is associated with considerable morbidity and recurrence. Many risk factors-including those metabolic, genetic, anatomic, dietary and environmental in nature-have been identified in children with urinary tract calculi. As pediatric urolithiasis with a metabolic etiology is the most common disease, evaluating the metabolic risk factors in patients is necessary to both effectively treat current stones and prevent recurrence. We discuss causative risk factors of pediatric urolithiasis, as well as the diagnostic and therapeutic approaches

    The unusual mineral vaterite in shells of the freshwater bivalve *Corbicula fluminea* from the UK

    No full text
    Spann N, Harper EM, Aldridge DC. The unusual mineral vaterite in shells of the freshwater bivalve *Corbicula fluminea* from the UK. Naturwissenschaften. 2010;97(8):743-751.Asian clams (Corbicula fluminea) with abnormally thickened shell valves were found in four rivers in the UK (Rivers Yare, Waveney, Thames and New Bedford River). The material making up these malformations was the rare calcium carbonate polymorph vaterite. Vaterite is seldom found in the natural environment because it is less stable than the other calcium carbonate polymorphs (aragonite and calcite). In the few reported cases of vaterite formation in molluscs, it is usually related to unusual biomineralisation events such as shell regeneration, pearls and initial stages of shell formation. We compared two populations from the Rivers Yare and Waveney in the Norfolk Broads, UK, one (River Waveney) displaying dominantly the normal Corbicula shell form with aragonitic shells. In the River Yare population, all individuals sampled had shell deformations to different extents. These deformations were apparent as bulges on the inside of the ventral shell margin. X-ray diffraction confirmed that the shell material in the bulges of recently collected clams was vaterite. Other parts of the deformed shells were aragonitic. The shell deformations alter the shell morphology, leading to higher and wider shells. The shell microstructure is fibrous in the vateritic parts and crossed-lamellar in the aragonitic parts of deformed or non-deformed shells. The cause for the malformations is probably a disrupted biomineralisation process in the bivalves. Fossil Corbicula specimens from the late Pleistocene had similar deformations, suggesting that this is not a response to anthropogenic causes, such as pollution

    The elementome of calcium-based urinary stones and its role in urolithiasis

    No full text
    Urolithiasis affects around 10% of the US population with an increasing rate of prevalence, recurrence and penetrance. The causes for the formation of most urinary calculi remain poorly understood, but obtaining the chemical composition of these stones might help identify key aspects of this process and new targets for treatment. The majority of urinary stones are composed of calcium that is complexed in a crystalline matrix with organic and inorganic components. Surprisingly, mitigation of urolithiasis risk by altering calcium homeostasis has not been very effective. Thus, studies to identify other therapeutic stone-specific targets, using proteomics, metabolomics and microscopy techniques, have been conducted, revealing a high level of complexity. The data suggest that numerous metals other than calcium and many nonmetals are present within calculi at measurable levels and several have distinct distribution patterns. Manipulation of the levels of some of these elemental components of calcium-based stones has resulted in clinically beneficial changes in stone chemistry and rate of stone formation. The elementome - the full spectrum of elemental content - of calcium-based urinary calculi is emerging as a new concept in stone research that continues to provide important insights for improved understanding and prevention of urinary stone disease
    corecore