28 research outputs found

    Deletion of chromosomal region 8p21 confers resistance to Bortezomib and is associated with upregulated Decoy trail receptor expression in patients with multiple myeloma

    Get PDF
    Loss of the chromosomal region 8p21 negatively effects survival in patients with multiple myeloma (MM) that undergo autologous stem cell transplantation (ASCT). In this study, we aimed to identify the immunological and molecular consequences of del(8)(p21) with regards to treatment response and bortezomib resistance. In patients receiving bortezomib as a single first line agent without any high-dose therapy, we have observed that patients with del(8)(p21) responded poorly to bortezomib with 50% showing no response while patients without the deletion had a response rate of 90%. In vitro analysis revealed a higher resistance to bortezomib possibly due to an altered gene expression profile caused by del(8)(p21) including genes such as TRAIL-R4, CCDC25, RHOBTB2, PTK2B, SCARA3, MYC, BCL2 and TP53. Furthermore, while bortezomib sensitized MM cells without del(8)(p21) to TRAIL/APO2L mediated apoptosis, in cells with del(8)(p21) bortezomib failed to upregulate the pro-apoptotic death receptors TRAIL-R1 and TRAIL-R2 which are located on the 8p21 region. Also expressing higher levels of the decoy death receptor TRAIL-R4, these cells were largely resistant to TRAIL/APO2L mediated apoptosis. Corroborating the clinical outcome of the patients, our data provides a potential explanation regarding the poor response of MM patients with del(8)(p21) to bortezomib treatment. Furthermore, our clinical analysis suggests that including immunomodulatory agents such as Lenalidomide in the treatment regimen may help to overcome this negative effect, providing an alternative consideration in treatment planning of MM patients with del(8)(p21)

    Circulating LL37 targets plasma extracellular vesicles to immune cells and intensifies Behçet's disease severity

    Get PDF
    Behçet's disease (BD) activity is characterised by sustained, over-exuberant immune activation, yet the underlying mechanisms leading to active BD state are poorly defined. Herein, we show that the human cathelicidin derived antimicrobial peptide LL37 associates with and directs plasma extracellular vesicles (EV) to immune cells, thereby leading to enhanced immune activation aggravating BD pathology. Notably, disease activity was correlated with elevated levels of circulating LL37 and EV plasma concentration. Stimulation of healthy PBMC with active BD patient EVs induced heightened IL1β, IFNα, IL6 and IP10 secretion compared to healthy and inactive BD EVs. Remarkably, when mixed with LL37, healthy plasma-EVs triggered a robust immune activation replicating the pathology inducing properties of BD EVs. The findings of this study could be of clinical interest in the management of BD, implicating LL37/EV association as one of the major contributors of BD pathogenesis. © 2017 The Author(s)

    Membrane-Bound IL-21 Promotes Sustained Ex Vivo Proliferation of Human Natural Killer Cells

    Get PDF
    NK cells have therapeutic potential for a wide variety of human malignancies. However, because NK cells expand poorly in vitro, have limited life spans in vivo, and represent a small fraction of peripheral white blood cells, obtaining sufficient cell numbers is the major obstacle for NK-cell immunotherapy. Genetically-engineered artificial antigen-presenting cells (aAPCs) expressing membrane-bound IL-15 (mbIL15) have been used to propagate clinical-grade NK cells for human trials of adoptive immunotherapy, but ex vivo proliferation has been limited by telomere shortening. We developed K562-based aAPCs with membrane-bound IL-21 (mbIL21) and assessed their ability to support human NK-cell proliferation. In contrast to mbIL15, mbIL21-expressing aAPCs promoted log-phase NK cell expansion without evidence of senescence for up to 6 weeks of culture. By day 21, parallel expansion of NK cells from 22 donors demonstrated a mean 47,967-fold expansion (median 31,747) when co-cultured with aAPCs expressing mbIL21 compared to 825-fold expansion (median 325) with mbIL15. Despite the significant increase in proliferation, mbIL21-expanded NK cells also showed a significant increase in telomere length compared to freshly obtained NK cells, suggesting a possible mechanism for their sustained proliferation. NK cells expanded with mbIL21 were similar in phenotype and cytotoxicity to those expanded with mbIL15, with retained donor KIR repertoires and high expression of NCRs, CD16, and NKG2D, but had superior cytokine secretion. The mbIL21-expanded NK cells showed increased transcription of the activating receptor CD160, but otherwise had remarkably similar mRNA expression profiles of the 96 genes assessed. mbIL21-expanded NK cells had significant cytotoxicity against all tumor cell lines tested, retained responsiveness to inhibitory KIR ligands, and demonstrated enhanced killing via antibody-dependent cell cytotoxicity. Thus, aAPCs expressing mbIL21 promote improved proliferation of human NK cells with longer telomeres and less senescence, supporting their clinical use in propagating NK cells for adoptive immunotherapy

    Poly(I:C) Enhances the Susceptibility of Leukemic Cells to NK Cell Cytotoxicity and Phagocytosis by DC

    Get PDF
    α Active specific immunotherapy aims at stimulating the host's immune system to recognize and eradicate malignant cells. The concomitant activation of dendritic cells (DC) and natural killer (NK) cells is an attractive modality for immune-based therapies. Inducing immunogenic cell death to facilitate tumor cell recognition and phagocytosis by neighbouring immune cells is of utmost importance for guiding the outcome of the immune response. We previously reported that acute myeloid leukemic (AML) cells in response to electroporation with the synthetic dsRNA analogue poly(I:C) exert improved immunogenicity, demonstrated by enhanced DC-activating and NK cell interferon-γ-inducing capacities. To further invigorate the potential of these immunogenic tumor cells, we explored their effect on the phagocytic and cytotoxic capacity of DC and NK cells, respectively. Using single-cell analysis, we assessed these functionalities in two- and three-party cocultures. Following poly(I:C) electroporation AML cells become highly susceptible to NK cell-mediated killing and phagocytosis by DC. Moreover, the enhanced killing and the improved uptake are strongly correlated. Interestingly, tumor cell killing, but not phagocytosis, is further enhanced in three-party cocultures provided that these tumor cells were upfront electroporated with poly(I:C). Altogether, poly(I:C)-electroporated AML cells potently activate DC and NK cell functions and stimulate NK-DC cross-talk in terms of tumor cell killing. These data strongly support the use of poly(I:C) as a cancer vaccine component, providing a way to overcome immune evasion by leukemic cells

    Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process

    Get PDF
    Contains fulltext : 97724.pdf (publisher's version ) (Open Access)Natural killer (NK) cell-based adoptive immunotherapy is a promising treatment approach for many cancers. However, development of protocols that provide large numbers of functional NK cells produced under GMP conditions are required to facilitate clinical studies. In this study, we translated our cytokine-based culture protocol for ex vivo expansion of NK cells from umbilical cord blood (UCB) hematopoietic stem cells into a fully closed, large-scale, cell culture bioprocess. We optimized enrichment of CD34(+) cells from cryopreserved UCB units using the CliniMACS system followed by efficient expansion for 14 days in gas-permeable cell culture bags. Thereafter, expanded CD34(+) UCB cells could be reproducibly amplified and differentiated into CD56(+)CD3(-) NK cell products using bioreactors with a mean expansion of more than 2,000 fold and a purity of >90%. Moreover, expansion in the bioreactor yielded a clinically relevant dose of NK cells (mean: 2x10(9) NK cells), which display high expression of activating NK receptors and cytolytic activity against K562. Finally, we established a versatile closed washing procedure resulting in optimal reduction of medium, serum and cytokines used in the cell culture process without changes in phenotype and cytotoxic activity. These results demonstrate that large numbers of UCB stem cell-derived NK cell products for adoptive immunotherapy can be produced in closed, large-scale bioreactors for the use in clinical trials

    Advantages and clinical applications of natural killer cells in cancer immunotherapy

    No full text
    The past decade has witnessed a burgeoning of research and further insight into the biology and clinical applications of natural killer (NK) cells. Once thought to be simple innate cells important only as cytotoxic effector cells, our understanding of NK cells has grown to include memory-like responses, the guidance of adaptive responses, tissue repair, and a delicate paradigm for how NK cells become activated now termed “licensing” or “arming”. Although these cells were initially discovered and named for their spontaneous ability to kill tumor cells, manipulating NK cells in therapeutic settings has proved difficult and complex in part due to our emerging understanding of their biology. Therapies involving NK cells may either activate endogenous NK cells or involve transfers of exogenous cells by hematopoietic stem cell transplantation (HSCT) or adoptive cell therapy (ACT). Here we review the basic biology of NK cells, highlighting characteristics which make NK cells particularly useful in cancer therapies. We also explore current treatment strategies that have been used for cancer as well as discuss potential future directions for the field
    corecore