42 research outputs found

    Evaluation Strategies for HCI Toolkit Research

    Get PDF
    Toolkit research plays an important role in the field of HCI, as it can heavily influence both the design and implementation of interactive systems. For publication, the HCI community typically expects toolkit research to include an evaluation component. The problem is that toolkit evaluation is challenging, as it is often unclear what ‘evaluating’ a toolkit means and what methods are appropriate. To address this problem, we analyzed 68 published toolkit papers. From our analysis, we provide an overview of, reflection on, and discussion of evaluation methods for toolkit contributions. We identify and discuss the value of four toolkit evaluation strategies, including the associated techniques that each employs. We offer a categorization of evaluation strategies for toolkit researchers, along with a discussion of the value, potential limitations, and trade-offs associated with each strategy

    The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations

    Get PDF
    It is well known that the clustering of galaxies depends on galaxy type. Such relative bias complicates the inference of cosmological parameters from galaxy redshift surveys, and is a challenge to theories of galaxy formation and evolution. In this paper we perform a joint counts-in-cells analysis on galaxies in the 2dF Galaxy Redshift Survey, classified by both colour and spectral type, η, as early- or late-type galaxies. We fit three different models of relative bias to the joint probability distribution of the cell counts, assuming Poisson sampling of the galaxy density field. We investigate the non-linearity and stochasticity of the relative bias, with cubic cells of side 10 =L = 45 Mpc (h = 0.7). Exact linear bias is ruled out with high significance on all scales. Power-law bias gives a better fit, but likelihood ratios prefer a bivariate lognormal distribution, with a non-zero ‘stochasticity', i.e. scatter that may result from physical effects on galaxy formation other than those from the local density field. Using this model, we measure a correlation coefficient in log-density space (rLN) of 0.958 for cells of length L = 10 Mpc, increasing to 0.970 by L = 45 Mpc. This corresponds to a stochasticity of 0.44 ± 0.02 and 0.27 ± 0.05, respectively. For smaller cells, the Poisson-sampled lognormal distribution presents an increasingly poor fit to the data, especially with regard to the fraction of completely empty cells. We compare these trends with the predictions of semi-analytic galaxy formation models: these match the data well in terms of the overall level of stochasticity, variation with scale and the fraction of empty cell

    The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations

    Get PDF
    It is well known that the clustering of galaxies depends on galaxy type. Such relative bias complicates the inference of cosmological parameters from galaxy redshift surveys, and is a challenge to theories of galaxy formation and evolution. In this paper we perform a joint counts-in-cells analysis on galaxies in the 2dF Galaxy Redshift Survey, classified by both colour and spectral type, η, as early- or late-type galaxies. We fit three different models of relative bias to the joint probability distribution of the cell counts, assuming Poisson sampling of the galaxy density field. We investigate the non-linearity and stochasticity of the relative bias, with cubic cells of side 10 ⩽ L ⩽ 45 Mpc (h = 0.7). Exact linear bias is ruled out with high significance on all scales. Power-law bias gives a better fit, but likelihood ratios prefer a bivariate lognormal distribution, with a non-zero ‘stochasticity’, i.e. scatter that may result from physical effects on galaxy formation other than those from the local density field. Using this model, we measure a correlation coefficient in log-density space (r_(LN)) of 0.958 for cells of length L = 10 Mpc, increasing to 0.970 by L = 45 Mpc. This corresponds to a stochasticity σ_b/bˆ of 0.44 ± 0.02 and 0.27 ± 0.05, respectively. For smaller cells, the Poisson-sampled lognormal distribution presents an increasingly poor fit to the data, especially with regard to the fraction of completely empty cells. We compare these trends with the predictions of semi-analytic galaxy formation models: these match the data well in terms of the overall level of stochasticity, variation with scale and the fraction of empty cells

    Substructure analysis of selected low-richness 2dFGRS clusters of galaxies

    Get PDF
    Complementary one-, two- and three-dimensional tests for detecting the presence of substructure in clusters of galaxies are applied to recently obtained data from the 2dF Galaxy Redshift Survey. The sample of 25 clusters used in this study includes 16 clusters not previously investigated for substructure. Substructure is detected at or greater than the 99 per cent confidence level in at least one test for 21 of the 25 clusters studied here. From the results, it appears that low-richness clusters commonly contain subclusters participating in mergers. About half of the clusters have two or more components within 0.5 h−1 Mpc of the cluster centroid, and at least three clusters (Abell 1139, Abell 1663 and Abell S333) exhibit velocity-position characteristics consistent with the presence of possible cluster rotation, shear, or infall dynamics. The geometry of certain features is consistent with influence by the host supercluster environments. In general, our results support the hypothesis that low-richness clusters relax to structureless equilibrium states on very long dynamical time-scales (if at all

    The 2dF Galaxy Redshift Survey: the nature of the relative bias between galaxies of different spectral type

    Get PDF
    We present an analysis of the relative bias between early- and late-type galaxies in the Two-degree Field Galaxy Redshift Survey (2dFGRS) - as defined by the η parameter of Madgwick et al., which quantifies the spectral type of galaxies in the survey. We calculate counts in cells for flux-limited samples of early- and late-type galaxies, using approximately cubical cells with sides ranging from 7 to 42 h−1 Mpc. We measure the variance of the counts in cells using the method of Efstathiou et al., which we find requires a correction for a finite volume effect equivalent to the integral constraint bias of the autocorrelation function. Using a maximum-likelihood technique we fit lognormal models to the one-point density distribution, and develop methods of dealing with biases in the recovered variances resulting from this technique. We then examine the joint density distribution function, f(δE, δL), and directly fit deterministic bias models to the joint counts in cells. We measure a linear relative bias of ≈1.3, which does not vary significantly with ℓ. A deterministic linear bias model is, however, a poor approximation to the data, especially on small scales (ℓ≤ 28h−1 Mpc) where deterministic linear bias is excluded at high significance. A power-law bias model with index b1≈ 0.75 is a significantly better fit to the data on all scales, although linear bias becomes consistent with the data for ℓ≳ 40h−1 Mp

    The 2dF Galaxy Redshift Survey: the blue galaxy fraction and implications for the Butcher—Oemler effect

    Get PDF
    We derive the fraction of blue galaxies in a sample of clusters at z < 0.11 and the general field at the same redshift. The value of the blue fraction is observed to depend on the luminosity limit adopted, cluster-centric radius and, more generally, local galaxy density, but it does not depend on cluster properties. Changes in the blue fraction are due to variations in the relative proportions of red and blue galaxies but the star formation rate for these two galaxy groups remains unchanged. Our results are most consistent with a model where the star formation rate declines rapidly and the blue galaxies tend to be dwarfs and do not favour mechanisms where the Butcher-Oemler effect is caused by processes specific to the cluster environmen

    Galaxy and Mass Assembly (GAMA): Variation in galaxy structure across the green valley

    Get PDF
    Using a sample of 472 local Universe (z \u3c 0.06) galaxies in the stellar mass range 10.25 \u3c logM*/M⊙ \u3c 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is subdivided into red, green, and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using Kilo- Degree Survey (KiDS) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Kilo-Degree Infrared Galaxy Survey (VIKING) derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells, and signs of merger activity for all systems. We find a significant surplus of rings (2.3s) and lenses (2.9s) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3s relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ~44 per cent which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ~20-30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0s surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley

    Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS

    Get PDF
    We analyse the observed correlation between galaxy environment and Hα emission-line strength, using volume-limited samples and group catalogues of 24 968 galaxies at 0.05 < z < 0.095, drawn from the 2dF Galaxy Redshift Survey ( < −19.5) and the Sloan Digital Sky Survey (Mr < −20.6). We characterize the environment by: (1) Σ5, the surface number density of galaxies determined by the projected distance to the fifth nearest neighbour; and (2) ρ1.1 and ρ5.5, three-dimensional density estimates obtained by convolving the galaxy distribution with Gaussian kernels of dispersion 1.1 and 5.5 Mpc, respectively. We find that star-forming and quiescent galaxies form two distinct populations, as characterized by their Hα equivalent width, W0(Hα). The relative numbers of star-forming and quiescent galaxies vary strongly and continuously with local density. However, the distribution of W0(Hα) amongst the star-forming population is independent of environment. The fraction of star-forming galaxies shows strong sensitivity to the density on large scales, ρ5.5, which is likely independent of the trend with local density, ρ1.1. We use two differently selected group catalogues to demonstrate that the correlation with galaxy density is approximately independent of group velocity dispersion, for σ= 200-1000 km s-1. Even in the lowest-density environments, no more than ∼70 per cent of galaxies show significant Hα emission. Based on these results, we conclude that the present-day correlation between star formation rate and environment is a result of short-time-scale mechanisms that take place preferentially at high redshift, such as starbursts induced by galaxy-galaxy interaction

    Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS

    Get PDF
    We analyse the observed correlation between galaxy environment and Hα emission-line strength, using volume-limited samples and group catalogues of 24 968 galaxies at 0.05 < z < 0.095, drawn from the 2dF Galaxy Redshift Survey (M_(bJ) < −19.5) and the Sloan Digital Sky Survey (Mᵣ < −20.6). We characterize the environment by: (1) Σ₅, the surface number density of galaxies determined by the projected distance to the fifth nearest neighbour; and (2) ρ1.1 and ρ5.5, three-dimensional density estimates obtained by convolving the galaxy distribution with Gaussian kernels of dispersion 1.1 and 5.5 Mpc, respectively. We find that star-forming and quiescent galaxies form two distinct populations, as characterized by their Hα equivalent width, W₀(Hα). The relative numbers of star-forming and quiescent galaxies vary strongly and continuously with local density. However, the distribution of W₀(Hα) amongst the star-forming population is independent of environment. The fraction of star-forming galaxies shows strong sensitivity to the density on large scales, ρ5.5, which is likely independent of the trend with local density, ρ1.1.We use two differently selected group catalogues to demonstrate that the correlation with galaxy density is approximately independent of group velocity dispersion, for σ = 200–1000 km s⁻¹. Even in the lowest-density environments, no more than ∼70 per cent of galaxies show significant Hα emission. Based on these results, we conclude that the present-day correlation between star formation rate and environment is a result of short-time-scale mechanisms that take place preferentially at high redshift, such as starbursts induced by galaxy–galaxy interactions
    corecore