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ABSTRACT
It is well known that the clustering of galaxies depends on galaxy type. Such relative bias
complicates the inference of cosmological parameters from galaxy redshift surveys, and is
a challenge to theories of galaxy formation and evolution. In this paper we perform a joint
counts-in-cells analysis on galaxies in the 2dF Galaxy Redshift Survey, classified by both
colour and spectral type, η, as early- or late-type galaxies. We fit three different models of
relative bias to the joint probability distribution of the cell counts, assuming Poisson sampling
of the galaxy density field. We investigate the non-linearity and stochasticity of the relative
bias, with cubic cells of side 10 � L � 45 Mpc (h = 0.7). Exact linear bias is ruled out with
high significance on all scales. Power-law bias gives a better fit, but likelihood ratios prefer
a bivariate lognormal distribution, with a non-zero ‘stochasticity’, i.e. scatter that may result
from physical effects on galaxy formation other than those from the local density field. Using
this model, we measure a correlation coefficient in log-density space (rLN) of 0.958 for cells
of length L = 10 Mpc, increasing to 0.970 by L = 45 Mpc. This corresponds to a stochasticity
σb/b̂ of 0.44 ± 0.02 and 0.27 ± 0.05, respectively. For smaller cells, the Poisson-sampled
lognormal distribution presents an increasingly poor fit to the data, especially with regard
to the fraction of completely empty cells. We compare these trends with the predictions of
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semi-analytic galaxy formation models: these match the data well in terms of the overall level
of stochasticity, variation with scale and the fraction of empty cells.

Key words: methods: statistical – surveys – galaxies: distances and redshifts – galaxies:
statistics – large-scale structure of Universe.

1 I N T RO D U C T I O N

The question of whether galaxies trace the matter distribution of the
Universe has many implications for cosmology and galaxy forma-
tion theories. Since Hubble & Humason (1931) it has been known
that galaxies of different type cluster differently, and as such it cannot
be possible for all galaxies to trace the matter distribution exactly.
This observation has been reconfirmed many times, traditionally
by comparisons of the correlation functions of different subgroups.
For example, early-type (or passive) galaxies are more strongly clus-
tered than late-type (or actively star-forming) galaxies (e.g. Davis
& Geller 1976; Dressler 1980; Lahav, Nemiroff & Piran 1990;
Hermit et al. 1996; Norberg et al. 2002; Zehavi et al. 2002;
Madgwick et al. 2003a) and luminous galaxies cluster more strongly
than faint galaxies (e.g. Willmer, da Costa & Pellegrini 1998;
Norberg et al. 2001, 2002; Zehavi et al. 2002, 2004).

Any difference in the distribution of galaxies relative to mass
has become known as galaxy bias. This assumed a central impor-
tance in cosmology via the attempts to rescue the �m = 1 universe
after observations of cluster mass-to-light ratios suggested values
closer to �m = 0.2. Such a bias could occur if the galaxy formation
efficiency were increased in overdense regions of space, the so-
called ‘high-peak scenario’ (Davis et al. 1985; Bardeen et al. 1986).
Although these efforts ultimately proved fruitless, understanding of
bias remains important. In recent years much effort has been put into
investigating galaxy bias through theory and numerical modelling,
while observational results have been restricted by small survey vol-
umes. With the advent of large galaxy redshift surveys such as the
2dF Galaxy Redshift Survey (2dFGRS: Colless et al. 2001, 2003),
the Sloan Digital Sky Survey (SDSS: Strauss et al. 2002) and the
Deep Extragalactic Evolutionary Probe (DEEP: Davis et al. 2003)
it is becoming possible to quantify the galaxy distribution as never
before, and provide detailed descriptions with which to compare
theoretical and numerical models.

In principle, the form of bias should be derivable from the fun-
damental physical processes involved in galaxy formation; until we
understand these, the bias remains a description of our ignorance.
The simplest model of galaxy biasing is the linear biasing model:
δg(x) = bδm(x), where δg is the galaxy overdensity perturbation, δm

the mass overdensity perturbation and b is a constant bias parameter.
This model is unphysical for b > 1, as it allows negative densities.
Alternative models in the literature fall into several basic classes:
linear or non-linear, local or non-local, deterministic or stochastic.
Locally biased galaxy formation (e.g. Coles 1993; Fry & Gaztanaga
1993; Scherrer & Weinberg 1998) depends only on the properties
of the local environment, and the galaxy density is assumed to be a
universal function of the matter density:

δg = f (δm). (1)

Because galaxies are discrete objects, this prescription is normally
supplemented by the Poisson clustering hypothesis, in which galax-
ies are modelled as random events, the expectation number density
of which is specified via δg. This model for discreteness can only be
an approximation, but there is no simple alternative. We therefore

assume Poisson sampling in what follows; for consistency, theoret-
ical predictions are treated in the same way as the real data.

Non-local models (e.g. Bower et al. 1993; Matsubara 1999) arise
when the efficiency of galaxy formation is modulated over scales
larger than those over which the matter moves, for example by effects
of quasar radiation on star formation. Stochastic bias (Pen 1998;
Dekel & Lahav 1999, hereafter DL99) allows a range of values of
δg for a given δm, above the Poissonian scatter caused by galaxy
discreteness. Stochasticity is a natural part of non-local models,
but some stochasticity is always expected to arise from physical
processes of galaxy formation (Blanton et al. 1999). Throughout
this paper we follow the general framework for non-linear stochastic
biasing of DL99, in which the overdensity of one field can be related
to that of a second field contained in the same volume of space
through

δ1 = b(δ2)δ2 + ε. (2)

The scatter (stochasticity) in the relation is given by

ε ≡ δ1 − 〈δ1〉. (3)

In principle, the bias parameter b can be any function of δ2; a constant
value of b and ε = 0 represents deterministic linear biasing.

Galaxy bias is clearly of astrophysical interest in relation to an un-
derstanding of galaxy formation and evolution. Bias is also a major
practical source of uncertainty in deriving cosmological constraints
from galaxy surveys. Some particular examples are the measure-
ment of β = �0.6

m /b (Peacock et al. 2001; Hawkins et al. 2003),
where DL99 showed that stochastic effects could explain large dis-
crepancies between results from different methods (for a review see
Dekel & Ostriker 1999, table 7.2). Power spectrum measurements
require constant bias as a fundamental assumption (Percival et al.
2001), and constraints placed on neutrino mass also assume scale-
independent biasing (Elgarøy & Lahav 2003). Pen (1998) calculate
the effect of non-linear stochastic bias on the measurement of the
galaxy power spectrum on large scales, showing how the galaxy
variance, bias and galaxy-dark matter cross-correlation coefficient
can be calculated from velocity distortions in the power spectrum.
The importance of biasing has increased still further with the release
of the WMAP first year results (Spergel et al. 2003). In order to
combine cosmic microwave background (CMB) and 2dFGRS data
to give tighter constraints on cosmological parameters, a model for
galaxy bias is required (Verde et al. 2003).

Three independent methods have been used to investigate galaxy
biasing in the 2dFGRS catalogue. Lahav et al. (2002) combined
pre-WMAP CMB and 2dFGRS data sets to measure the average bias
over a range 0.02 < k < 0.15 h Mpc−1, concluding that galaxies are
almost exactly unbiased on these scales. Verde et al. (2002) found
the bias parameter to be consistent with unity over scales 0.1 < k <

0.5 h Mpc−1 through measurements of the 2dFGRS bispectrum.
A more direct method of studying the relation between mass

and light is to map the dark matter using gravitational lensing.
This field has made great progress in recent years, and it has
been possible to measure not only the absolute degree of bias,
but also its non-linearity and stochasticity (Fischer et al. 2000;
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Hoekstra et al. 2002; Fan 2003; Pen et al. 2003). For example,
Hoekstra et al. (2002) combine the Red-Sequence Cluster Survey
and the VIRMOS-DESCART survey to find an average bias of
b = 0.71 and a linear correlation coefficient of r � 0.57 on scales of
1–2 h−1 Mpc−1. However, current weak-lensing measurements are
dominated by non-linear and quasi-linear scales in the power spec-
trum, and it is not yet possible to say a great deal concerning bias
in the very large-scale linear regime. This is of course the critical
region for the interpretation of redshift surveys, where we want to
know the relation between the power spectra of mass and light on
>100 Mpc scales.

This question will be settled by future weak-lensing surveys. In
the meantime, we can address a related simpler problem: the relative
bias between subsets of galaxies. The morphological differences be-
tween galaxies and the link to their environments has been discussed
for many decades as a potential clue to the nature and evolution of
galaxy clustering (e.g. Spitzer & Baade 1951; Gunn & Gott 1972;
Davis & Geller 1976; Yoshikawa et al. 2001). Modern galaxy red-
shift surveys allow us to split the galaxy population into a variety
of subdivisions such as spectral type, colour and surface brightness.
We can look at relative bias as a function of scale, and weighted by
luminosity. This should yield important insights into the absolute
degree of bias that may exist. Norberg et al. (2001) measured bias
as a function of luminosity in the 2dFGRS, finding a bias relative
to L∗ galaxies of b/b∗ = 0.85 + 0.15L/L∗. We concentrate on the
natural bimodality of the galaxy population, between red early types
with little active star formation, and the blue late-type population
(e.g. Baldry et al. 2003). Lahav & Saslaw (1992) measured bias as a
function of morphological type and scale using the UGC, ESO and
IRAS catalogues. The Las Campanas Redshift Survey has already
provided some observational evidence against the linear determinis-
tic model from splitting galaxies by their spectral types (Tegmark &
Bromley 1999; Blanton 2000), and we present here a more extensive
analysis of this type.

There are several complementary methods for the measurement
of galaxy clustering, although most previous studies of the relative
bias between galaxy types have concentrated on a relative bias pa-
rameter defined as the square root of the ratio of the correlation
functions for the types under study. Madgwick et al. (2003a) used
this method to measure the relative bias in the 2dFGRS, finding b
(passive/active) ranging from approximately 2.5 to 1.2 on scales of
0.2 < r < 20 h−1 Mpc. However, even within such a large survey as
the 2dFGRS the correlation functions become noisy beyond approx-
imately 10 h−1 Mpc. A second method is counts-in-cells, which can
be directly related to the correlation function (Peebles 1980), and is
optimized for the study of larger scales. It is this latter method that we
employ in this paper. Conway et al. (2004) have also investigated
the relative bias of different galaxy types using a counts-in-cells
analysis of the 2dFGRS, but they use magnitude-limited samples,
and consider only deterministic bias models, whereas our present
analyses use volume-limited samples, and consider stochastic bias
models. The counts-in-cells method has also been used to calcu-
late the variance and higher-order moments of galaxy clustering in
the 2dFGRS (Baugh et al. 2004; Conway et al. 2004; Croton et al.
2004a,b).

Many theoretical results on biasing from numerical models have
also been reported. There are two main approaches to modelling
galaxy distributions: semi-analytic (e.g. Kauffmann, Nusser &
Steinmetz 1997; Somerville & Primack 1999; Benson et al. 2000)
and hydrodynamic (e.g. Cen & Ostriker 1992; Blanton et al. 1999;
Cen & Ostriker 2000; Yoshikawa et al. 2001). Comparisons are
given by Helly et al. (2003) and Yoshida et al. (2002). Several stud-

ies have been made of galaxy biasing in these numerical simulations
(e.g. Somerville et al. 2001; Yoshikawa et al. 2001), but none pro-
vide results in sufficient detail to allow an easy comparison with the
2dFGRS. We therefore analyse a large new semi-analytic calcula-
tion which is capable of yielding mock results that can be analysed
in an identical manner to the real data.

In this paper we concentrate on a few aspects of relative bias
mentioned above: splitting galaxies by spectral type and colour. We
investigate the non-linearity, stochasticity and scale dependence of
the biasing relation through comparison with three models. Sec-
tion 2 summarizes the DL99 framework for biasing, and presents
the bias models used in this paper. Section 3 describes the 2dFGRS
catalogue, the derivations of the galaxies spectral types and colours
and Section 4 explains the counts-in-cells method. In Section 5 we
show the methods used for model fitting and error estimation. Sec-
tion 6 gives the results and we compare our results with simulations
in Section 7.

Throughout, we adopt a cosmological geometry with �m =
0.3, �v = 0.7 in order to convert redshifts and angles into three-
dimensional comoving distances. We define our cells with h =
0.7, and all cell lengths are quoted in Mpc, instead of the standard
h−1 Mpc.

2 M O D E L L I N G R E L AT I V E B I A S

The simplest model for any bias (i.e. mass–galaxy, early–late, red–
blue etc.) is that of linear deterministic bias: given a number of one
type of object you can predict precisely (within Poisson errors) the
number of the other type of object in the same region of space, and
the relationship between the two numbers is linear. Recalling the
familiar relation for the mass–galaxy distributions δg = bδm , we
can write δL = bδE where δE (δL) denotes the overdensity of early-
(late-) type galaxies in a volume of space. As described above, this
empirical model can become unphysical in low-density regions.
Considering the complex processes involved in galaxy formation, it
would be surprising to find linear deterministic biasing to be true in
all cases. Any reasonable physical theory in fact predicts non-trivial
mass–galaxy biasing (Cole & Kaiser 1989) and simulations can also
find biasing to be a complicated issue particularly on small scales
(Cen & Ostriker 1992; Blanton et al. 1999; Somerville et al. 2001).

We investigate two potential improvements to the linear deter-
ministic model. First, the bias could be non-linear, and some non-
linearity is inevitable in order to ‘fix’ the unphysical properties of
the linear model. Secondly, there may exist stochasticity (scatter be-
yond Poissonian discreteness noise), due to astrophysical processes
involved in galaxy formation. DL99 presented a general framework
to quantify these different aspects of biasing, and the following sec-
tion summarizes their results.

2.1 A framework for non-linear, stochastic bias

We use the notation f (δE) and f (δL) to denote the one-point prob-
ability distribution functions (PDFs) for the fractional density fluc-
tuations of early- and late-type galaxies. The fields δE and δL have
zero mean by definition, and their variances are defined by

σ 2
i ≡

∫ ∞

−1

δ2
i f (δi ) d(δi ) ≡ 〈

δ2
i

〉
. (4)

The joint underlying probability distribution of early- and late-type
galaxies is given by

f (δE, δL) = f (δE) f (δL|δE) (5)

= f (δL) f (δE|δL). (6)
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Both equations (5) and (6) should give the same outcome, but we
have chosen to work with equation (5) to avoid unphysical linear
biasing.

The natural generalization of linear biasing is given by

b(δE)δE ≡ 〈δL|δE〉 =
∫

f (δL|δE)δL dδL. (7)

There are several useful statistics that can be used to investigate
independently the fraction of non-linearity and stochasticity of a
model or data. First, the mean biasing is defined by

b̂ ≡
〈

b(δE)δ2
E

〉
σ 2

E

; (8)

the non-linear equivalent of this is

b̃2 ≡
〈

b2(δE)δ2
E

〉
σ 2

E

. (9)

In each case the denominator is assigned such that linear biasing
reduces to b = b̂ = b̃. The random biasing field is defined as

ε ≡ δL − 〈δL|δE〉 (10)

and the statistical character of the biasing relation can be described
via its variance, the biasing scatter function

σ 2
b (δE) ≡

〈
ε2|δE

〉
σ 2

E

. (11)

The average biasing scatter is then given by

σ 2
b ≡ 〈ε2〉

σ 2
E

. (12)

The purpose of this parametrization is to separate naturally the
effects of non-linearity and stochasticity, allowing them to be quan-
tified via the relations

non-linearity ≡ b̃/b̂ (13)

stochasticity ≡ σb/b̂. (14)

There are two further useful relations that are often quoted in the
literature as measures of the bias parameter and stochasticity: the
ratio of variances

bvar ≡ σL

σE
(15)

and the linear correlation coefficient

rlin ≡ 〈δEδL〉
σEσL

= b̂

bvar
. (16)

Both bvar and r lin can be written in terms of the basic parameters
given above, and both mix non-linear and stochastic effects. Non-
parametric correlation coefficients can also be calculated directly
from the data, although some method must be employed to account
for shot noise. We refer the interested reader to DL99 for further
details on the equations in this section.

Note that we work throughout with redshift-space overdensities.
Redshift-space distortions are dependent on galaxy type due to the
different clustering properties of early- and late-type galaxies. On
non-linear scales the dominant effect is the finger-of-God stretching,
but on the scales of interest to this paper we expect the linear β-effect
to apply (Kaiser 1987). Averaging over all angles and including
stochasticity between the galaxy and matter fields, we can write the
redshift-space power spectrum, Ps, as

Ps

Pr
=

(
1 + 2

3
rβ + 1

5
β2

)
, (17)

where β = �0.6
m /b, b is the mass–galaxy bias, r is the linear mass–

galaxy correlation coefficient and Pr is the real-space power spec-
trum (Pen 1998; Dekel & Lahav 1999). The β-effect was measured
for galaxies of different spectral class in the 2dFGRS by Madgwick
et al. (2003a), obtaining βL = 0.49 ± 0.13 and βE = 0.48 ± 0.14.
From these results and assuming r = 1 we obtain

Ps,E

Ps,L
= 0.99

Pr,E

Pr,L
. (18)

Although this suggests the effect is not large and currently insignif-
icant within the errors, it is clear that in the case of zero stochas-
ticity, redshift-space distortions will work to reduce the difference
in the measured clustering between types. However, including a
value of r which is non-unity and dependent on galaxy type as sug-
gested by simulations (e.g. Blanton et al. 1999), has a significant
effect. For example, taking r L = 0.8 and r E = 1.0 increases the
relative distortion from 0.99 to 1.04, where rL (rE) is the linear cor-
relation coefficient between the mass and late- (early-) type galaxy
fields.

2.2 One-point probability distribution function

Given equation (5) we can split the model into two parts, first the
distribution of early-type galaxies per cell, and secondly the biasing
relation connecting the two distributions (see the following section).
A standard description for the underlying probability distribution of
a galaxy overdensity, f (1 + δ), is lognormal (Coles & Jones 1991).
Applying this for example to the early-type galaxies:

f (δE) dδE = 1

ωE

√
2π

exp

(−x2

2ω2
E

)
dx, (19)

where

x = ln(1 + δE) + ω2
E

2
(20)

and ω2
E is the variance of the corresponding normal distribution

f [ ln(1 + δ)]:

ω2
E = 〈

[ln(1 + δE)]2
〉
. (21)

The offset ω2
E/2 is required to impose 〈δE〉 = 0. If the lognormal

distribution correctly describes the data, the variance of the over-
densities, 〈δ2

E〉, is related to the variance of the underlying Gaussian
distribution by

σ 2
E ≡ 〈

δ2
E

〉 = exp
(
ω2

E

) − 1. (22)

In Section 6.5 we show that fitting a lognormal distribution directly
to the data does not yield quite the same values for σ E and σ L

as a direct variance estimate, but this does not affect our final re-
sults for stochasticity. On the largest scales, a lognormal distribution
is completely consistent with the 2dFGRS data, and it provides a
transparent and simple way to describe the density field.

2.3 Biasing models

2.3.1 Deterministic bias: linear and power law

First, concentrating on deterministic bias, we can write the joint
probability distribution function as

f (δL|δE) = δD[δL − b(δE)δE], (23)

where δD is the Dirac delta function. This reduces directly to linear
bias by setting

b(δE)δE = b0,L + b1,LδE, (24)
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where the constraint 〈δL〉 = 0 fixes b0,L = 0. A simple variation
could be power-law bias

b(δE)δE = b0,P (1 + δE)b1,P − 1, (25)

which avoids the negative density predictions of linear bias, and
reduces to the linear biasing relation near δ = 0. Rearranging equa-
tion (25), using the properties of lognormal distributions and the
fact that b1,P = ωL/ωE, we find for the power-law bias that

b0,P = exp
[
0.5ω2

E

(
b1,P − b2

1,P
)]

. (26)

For convenience we define

blin = b1,L (27)

and

bpow = b1,P (28)

throughout the rest of this work.

2.3.2 Stochastic bias: bivariate lognormal

Returning to equation (7), we can introduce a broader function than
the Dirac delta function of equation (23). An interesting class of
model is when both δ fields form a bivariate Gaussian distribu-
tion, but this again becomes unphysical for δ < −1 (DL99). It is,
however, simple to cure this defect by assuming instead a bivariate
lognormal distribution, for which the joint probability distribution is
given by

f (gE, gL) = |V |−1/2

2π
exp

[
−

(
g̃E

2 + g̃L
2 − 2rLN g̃E g̃L

)
2
(

1 − r 2
LN

)
]
, (29)

where gi = ln(1 + δ i ) − 〈ln(1 + δ i )〉 and g̃i = gi/ωi , with i
corresponding to early or late type. ω i is related to the variance
of the underlying Gaussian field ln(1 + δ i ) as for the one-point
lognormal distribution:

σ 2
i ≡ 〈

δ2
i

〉 = exp
(
ω2

i

) − 1. (30)

The correlation coefficient is

rLN = 〈gEgL〉
ωEωL

≡ ω2
EL

ωEωL
(31)

and V is the covariance matrix

V =
(

ω2
E ω2

EL

ω2
EL ω2

L

)
. (32)

Taking f [ln(1 + δE)] to be a Gaussian of width ωE and mean
−ω2

E/2 [i.e. f (δE) is distributed as a lognormal, equation (19)], the
conditional probability distribution is

f (gL|gE) = f (gE, gL)

f (gE)

= ωE

(2π|V |)1/2
exp

[
− (g̃L − rLN g̃E)2

2
(

1 − r 2
LN

)
]
, (33)

i.e. the distribution of g̃L|g̃E is a Gaussian with mean rLN g̃E and
variance 1 − r2

LN.
As r LN → 1, equation (33) reduces to a Dirac delta function,

and this bivariate lognormal model reduces to the power-law bias
model of equation (25). It is important to note that rLN is not equal
to the linear correlation coefficient r lin of equation (16), which can
differ from unity even if r LN = 1. In this sense, the lognormal
parameters offer a cleaner separation of stochastic and non-linear
effects. If stochasticity is present within the data, this model may

provide an improvement over the deterministic biasing models. As
observational data improve, it may become possible to constrain
the relative biasing function to a greater extent; the current data are
insufficient for such an analysis.

Analytic solutions exist for the mean biasing parameters and bias-
ing scatter function given in Section 2.1 for this bivariate lognormal
model. These relations are presented in the Appendix.

2.4 Including observational shot noise

It is not possible to measure the underlying probability distribution
f (δE, δL) directly due to contamination of the observational data
with noise, the dominant form of which is expected to be Poisson
or ‘shot’ noise. This can be included in the models of the previous
section by convolution with a Poisson distribution (Coles & Jones
1991; Blanton 2000). In this way the measured probability of find-
ing NE early-type galaxies and N L late-type galaxies within a cell,
P(N E, N L), can be compared with the models above. Accounting
for shot noise in this way results in the models being less sensitive
to outliers than equations (23) and (33).

Using equation (5) to combine the one-point PDF (19) with
the conditional PDF (23 or 33), provides a model for the actual
joint probability distribution function f (δE, δL). Convolution with a
Poisson distribution then gives

P(NE, NL) =
∫ ∞

−1

∫ ∞

−1

N̄ NE
E (1 + δE)NE

NE!
e−N̄E(1+δE) f (δE)

× N̄ NL
L (1 + δL)NL

NL!
e−N̄L(1+δL) f (δL|δE) dδE dδL, (34)

where N̄E (N̄L) is the expected number of early- (late-) type galaxies
in a given cell, allowing for completeness.

3 T H E DATA : T H E 2 dF G R S

The 2dF Galaxy Redshift Survey, carried out between 1997 May
and 2002 April, has obtained 221 414 good-quality galaxy spectra
using the multi-object spectrograph 2dF on the Anglo-Australian
Telescope. The main survey area comprises two rectangular strips of
sky with boundaries (09h 50m < α < 14h 50m, −7.5◦ < δ < +2.5◦)
for the North Galactic Pole (NGP) and (21h 40m < α < 03h 40m,
−37.5◦ < δ < −22.5◦) for the South Galactic Pole (SGP), with a
galaxy median redshift of z̄ = 0.11. At the median redshift, the
physical size of the survey strips is 375 h−1 Mpc long and the SGP
and NGP regions have widths of 75 and 37.5 h−1 Mpc, respectively
(Peacock 2003). The input galaxies were selected from a revised and
extended version of the APM galaxy catalogue (Maddox et al. 1990),
and have a limiting extinction-corrected magnitude of B J = 19.45.
Further details of the 2dFGRS can be found in Colless et al. (2001,
2003), and on the web at http://msowww.anu.edu.au/2dFGRS/.

For any structure analysis it is important to be aware of several
problems that cause varying completeness over the survey region.
Common to all similar surveys, some regions of the sky must be
masked due to bright stars causing internal holes. Furthermore, due
to the adaptive tiling algorithm employed to ensure an optimal ob-
serving strategy, the sampling fraction falls to as little as 50 per
cent near the survey boundaries and internal holes due to lack of
tile overlap. Subsequent reanalysis of the photometry of the APM
galaxy catalogue has shown the survey depth to vary slightly with
position on the sky. To account for this, we use a limiting corrected
magnitude of B J = 19.2.
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3.1 The volume-limited galaxy sample

It is well known that the luminosity of a galaxy is correlated with
galaxy type. Therefore, in a flux-limited sample the fraction of
early/late types varies with redshift, potentially complicating the
analysis. Within any redshift survey the number density of objects
drops substantially as we reach beyond the L∗ galaxy luminosity.
The size of the 2dFGRS presents the option of studying volume-
limited galaxy samples rather than the more usual flux-limited data
sets of previous galaxy redshift surveys. By imposing a luminosity
and redshift cut, volume-limited samples contain a representative
sample of most galaxies over a large redshift range. Although some
faint galaxies at low redshift are lost from the analysis, the sample
selection effects are greatly simplified.

We use the publicly released data of 2003 June, containing a to-
tal of 221 414 unique galaxies with reliable redshifts, 192 979 of
which have spectral classification. An absolute magnitude limit of
MBJ−5 log10(h) � −19.0 gives a representative sample of the lo-
cal population, maximizing the number of cells, versus the number
of galaxies in each cell. The absolute magnitude is given by MBJ =
m − DM −K (z), where m is the apparent extinction-corrected mag-
nitude, DM is the distance modulus and K(z) is the K-correction.
Setting a limiting survey magnitude of m = 19.2 allows for the vary-
ing survey depth with position on the sky (Colless et al. 2001), the
K-corrections as a function of η type are given in Madgwick et al.
(2002). This gives a maximum redshift for our sample set by type 1
galaxies of zmax = 0.114, and 48 066 galaxies in total. 46 912 of these
have a spectral classification and 48 040 have measured colours. To
account for the selection effects within the survey we use the pub-
licly available redshift completeness masks. These are sufficient for
galaxies classified by colour, but the spectral-type analysis intro-
duces extra selection effects. A difference in completeness over a
region of sky could occur, for example, when the spectra of a survey
plate are of too poor quality to perform the spectral-type analysis,
yet redshifts can be obtained. It is necessary to create separate masks
to include these effects using the publicly available software.

3.2 Galaxy properties in the 2dFGRS

The 2dFGRS catalogue provides two methods of classification for
comparison. First, the well-studied galaxy spectral type η, and sec-
ondly the photometric colours of the galaxies have recently been
derived.

3.2.1 Spectral type, η

The spectral type of the galaxies has been derived by a principal-
component analysis (PCA), which identifies the most variable as-
pects of the galaxy spectra with no prior assumptions or template
spectra (Folkes et al. 1999; Madgwick et al. 2002). The spectral
type of the 2dFGRS galaxies is characterized by the value η, a
linear combination of the first two principal components, derived
in order to minimize the effect of distortions and imperfections in
the 2dFGRS spectra. In effect, η classifies galaxies according to
the average emission and absorption-line strength in the spectrum.
η provides a continuous classification scheme, but for our purposes
it is necessary to split the galaxies into two classes, at η = −1.4
as suggested in Madgwick (2003). Galaxies with η < −1.4 (type
1) are shown to be predominantly passive galaxies and those with
η > −1.4 (types 2–4) predominantly star-forming (Madgwick et al.
2003b). The former are hence termed ‘early type’ and the latter

‘late type’. The 2dFGRS catalogue contains 74 548 early-type and
118 424 late-type galaxies defined in this way.

One concern with using optical fibre spectra for this type of anal-
ysis are ‘aperture effects’, resulting from the fixed aperture of the
fibres being smaller than the size of galaxies. This could result in,
for example, only the bulge components of close spirals being ob-
served. Such effects have been studied in detail by Madgwick et al.
(2002), and no systematic bias found. One possible explanation for
this is the poor seeing present at the Anglo-Australian Telescope,
of the order of 1.5–1.8 arcsec, which will cause the fibre to aver-
age over a large fraction of the total galaxy light in most cases and
dilute aperture effects. An overabundance of late-type galaxies was
detected at redshifts beyond 0.11, which could be attributed to ei-
ther aperture effects or evolution; however, this will not affect our
volume-limited galaxy sample with a maximum redshift of zmax =
0.114. Aperture effects are discussed further in Section 6.2.4.

3.2.2 Broad-band colours

More recently it has been possible to obtain broad-band colours
for the 2dFGRS galaxies using the same BJ UKST plates as the
survey input catalogue (Hambly et al. 2001), but now scanned with
the SuperCosmos machine to yield smaller errors of approximately
0.09 mag band−1. Similar scans have also been made of the UKST
RF plates. The extinction corrections are from the dust maps of
Schlegel, Finkbeiner & Davis (1998) and wavelength-dependent
extinction ratios are from Cardelli, Clayton & Mathis (1989). We
define rest frame colour

(B − R)0 ≡ BJ − RF − K (BJ) + K (RF), (35)

where the colour-dependent K-corrections are

K (BJ) = (−1.63 + 4.53C) y

+(−4.03 − 2.01C) y2 − z

1 + (10z)4
,

(36)

K (RF) = (−0.08 + 1.45C) y + (−2.88 − 0.48C) y2, (37)

with y = z/(1 + z) and C = B J − RF. See Cross et al. (2004)
for more details. A division at (B − R)0 = 1.07 achieves a similar
separation between ‘passive’ and ‘actively star-forming’ galaxies to
spectral classification of type 1 to types 2–4, giving a total of 77 120
red galaxies and 144 292 blue galaxies.

The distributions of η type and colour for the 2dFGRS galaxies
are shown in Fig. 1, and the joint distribution is shown in Fig. 2.
The correlation between the two properties is clear, together with
the distinct bimodality, yet it is obvious that the relationship is not
exactly one-to-one. Table 1 gives the respective numbers of each
galaxy type in the 2dFGRS catalogue for comparison.

4 M E T H O D : C O U N T S - I N - C E L L S

A counts-in-cells analysis is employed, which involves splitting the
survey region into a lattice of roughly cubical cells and counting the
number of galaxies in each cell. The cell dimensions are defined such
that all have equal volume V ≡ L3, but with limits to right ascension
and declination that form a square on the sky. This angular selection
simplifies the treatment of the survey mask, but it means that the cells
are not perfect cubes. Over the redshift range involved, this effect
is small. The cells are required to fit strictly within the 2dFGRS
area, causing some parts of the survey to be unused. Although this
restriction, in principle, removes any boundary effects, it means
that cells of different sizes sample slightly different areas of the
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Figure 1. The distributions of spectral-type and rest frame colour for all 2dFGRS galaxies. The distinction between passive and actively star-forming galaxies
is clear in both distributions. Cuts at η = −1.4 and (B − R)0 = 1.07 produce the four subgroups with which we work.

Figure 2. The joint distribution of the colour and spectral types for galaxies
in the 2dFGRS.

Table 1. Numbers of early/late and red/blue galaxies in the 2dFGRS
catalogue with good-quality spectra (Q � 3).

Red/early Blue/late Total

Colour 77 120 144 292 221 414
η 74 548 118 424 192 979

Universe. We define our cells with h = 0.7 and in what follows all
cell lengths are quoted in Mpc, instead of the standard h−1 Mpc.
In practice, we considered 10 � L � 45 Mpc, giving a total of
between 11 423 and 72 cells in the volume-limited survey area after
removing low completeness cells. These cell sizes are equivalent in
volume to using top-hat smoothing spheres with radii 6.1 � r �
27.9 h−1 Mpc. Fig. 3 shows an example of how 25-Mpc cells cover
the 2dFGRS volume to z = 0.11.

As a result of internal holes in the survey and the adaptive tiling
algorithm employed, the sampling fraction in the 2dFGRS varies
over the sky. Random 2dFGRS catalogues can be created, which
include these selection effects by making use of the calculated survey
masks. Each cell count is weighted by the fraction of random points
found in the same cell in the mock catalogue. The spectral-type
analysis introduces extra selection effects, which are quantified by
a special mask (see Section 3.1).

An overdensity δ is calculated for each cell by dividing the ob-
served cell counts N by the expected number for a given cell allowing

for completeness, N̄ :

δi = Ni

N̄
− 1. (38)

This procedure is carried out for both early- and late-type galax-
ies within each cell. The overall density variance is defined by
equation (4).

It is necessary to set a completeness limit to remove excessively
undersampled cells, such as those affected by holes in the survey
due to stars, or cells at the less observed edges of the survey vol-
ume. Although the limits are somewhat arbitrary, it is important
they are set correctly as incomplete cells could affect our measure-
ments of scatter in the biasing relation. Fig. 4 shows the complete-
ness distributions for L = 25-Mpc cells. It can be seen that for
both η and colour classification the distribution has a sharp peak
of almost complete cells, with a long tail to low completeness and
a sharp cut-off at high completeness. The figure also highlights
the importance of including the effects of η classification on the
2dFGRS mask as the completeness peak and cut-off is noticeably
lower for η classification than for all galaxies. The lower com-
pleteness is reflected in the reduced number of cells available for
analysis.

A completeness limit is set for each cell at 70 per cent (or 60 per
cent for the larger cells), to include all cells within the high com-
pleteness peak. In order to check the effects of completeness on
the final results, the models were also fitted to only those cells
with a completenesses higher than 80 per cent (70 per cent for the
larger cells), and the results were found to be consistent within the
errors.

A general concern with a counts-in-cells analysis of observa-
tional data is the varying survey selection function over the extent
of a cell. For example, a cell containing a cluster of galaxies at
its most distant edge, and weighted by the average selection func-
tion over its volume, would give a different ‘count’ to a cell con-
taining a cluster near its inner boundary. Furthermore, with a joint
counts-in-cells analysis any relationship between luminosity and
galaxy type or colour will cause differing fractions of objects with
redshift.

With careful use of type-dependent selection functions such ef-
fects can be allowed for (Conway et al. 2004), but in our anal-
ysis we use volume-limited samples. This approach avoids these
complications at the expense of reducing the number of galax-
ies in the analysis. The size of the 2dFGRS offers a great advan-
tage over previous observational studies of relative bias, because it
provides volume-limited samples large enough to produce reliable
measurements.
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Figure 3. Wedge plots of the 2dFGRS volume-limited survey region with MBJ −5 log10(h) �−19.0. Dots represent late-type galaxies on the left and early-type
galaxies on the right (classified by spectral type). The redshift increases from the centre, and right ascension is shown on the horizontal axis, declination is
projected on to the plane. Typical cell boundaries of length L = 25 Mpc are overplotted.

Figure 4. Histograms showing the completeness distribution of 25-Mpc
cells using the standard 2dFGRS mask (top) and including the effects of
η classification (bottom).

5 PA R A M E T E R F I T T I N G

5.1 A maximum-likelihood approach

Once we have chosen a model, a maximum-likelihood method is
used to fit the free parameters of the model to the data. Denoting
the number of early- (late-) type galaxies within cell i as NE,i (N L,i),
the likelihood of finding a cell containing N E early-type and N L

late-type galaxies given a model with free parameters α, is defined
as

Li (NE,i , NL,i ;α) = P(NE,i , NL,i |α) (39)

and the total likelihood for all cells is then

L =
∏

Li . (40)

The likelihood can be maximized with respect to the free parameters
α to find the best-fitting values α̂ for the model given the data set.
In practice it is easier to minimize the function

L ≡ −
∑

i

ln Li . (41)

Note that this definition of L differs by a factor of 2 compared with
Conway et al. (2004).
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The models in Section 2 contain two or three free parameters:
σ E and/or σ L from the one-point PDFs, and b or rLN from the
conditional probability function. These parameters were fitted si-
multaneously to the data using a downhill simplex method (Press
et al. 1992).

5.2 Error estimation

As it is not possible to derive analytic solutions to the sampling
distribution of our maximum-likelihood estimators α̂, the standard
error on our parameters must be estimated directly from the likeli-
hood function using Bayes’ theorem and assuming a uniform prior
on α:

P(α|x) ∝ L(x;α), (42)

where α again denotes the model parameters, x the data and P the
probability.

For a single free parameter, the upper and lower limits on α are
found from

P(α− � α < α+|x) =
∫ α+

α−
L(x; α) dα∫ ∞

−∞ L(x; α) dα
. (43)

If it can be assumed that the likelihood function is reasonably ap-
proximated by a Gaussian, 1σ errors on the parameter can be es-
timated. For multiparameter models it is necessary to quantify any
possible degeneracy between errors. If the multidimensional like-
lihood function can be approximated by a multivariate Gaussian
distribution, individual errors and correlations between the param-
eters can be found.

A second method of error estimation involves creating many mock
data sets from the fitted model probability distributions themselves.
These data sets are made through Monte Carlo techniques, and de-
signed to closely reproduce the true data in size. On applying the
above likelihood techniques to these mock data sets, the best fit
and true parameters can be compared with estimate the errors. The
advantage of this method is that no assumptions need to be made
concerning the shape of the likelihood function. The disadvantage
is that we are assuming that the model is a correct representation of
the data, as the errors strictly apply only to the model not the data.
By increasing the size of the mock data sets, this method can also
be used to check for any bias inherent in the fitting method. This
process was carried out for each model in this paper, finding the
parameter estimations to be unbiased.

In all cases, we will make the assumption that the density fluc-
tuations in each cell can be treated as being independent. This is
clearly not true in detail, as the existence of modes with wavelength
� L will cause a correlation between nearby cells. This was consid-
ered by Broadhurst, Taylor & Peacock (1995), who showed that the
correlation coefficient was low even for adjacent cells: r � 0.2. As
we shall see, it is (1 − r2)1/2 that matters for joint distributions, and
so the failure of independence is negligible in practice.

5.3 Model comparison

Once we have found the best-fitting parameters for each of our three
models, we would like to know the goodness-of-fit of the models and
the significance of any differences between the fits. We approach
this using two different methods.

5.3.1 Likelihood ratios

To test the significance of one model against another model we use
the likelihood ratio test. In its simplest form we define the maximum-

likelihood ratio for hypothesis H0 versus H1

λ = L(x|H0)

L(x|H1)
, (44)

where x is the data and L represents the maximum likelihood
value. This will be especially valuable in assessing the evidence
for stochasticity, where we will compare a model of perfect corre-
lation with one where r LN �= 1 is allowed, effectively introducing
an extra parameter. The key question is how large a boost in likeli-
hood is expected from the introduction of an extra parameter, and
this was considered by Liddle (2004). He advocates the Bayesian
information criterion, defined as

B = −2 ln L + p ln N , (45)

where p is the number of parameters and N is the number of data
points. This measure of information effectively says that going from
a satisfactory model with p parameters to one that overfits with
p + 1 parameters would be expected to increase lnL by 0.5lnN.
Therefore, in order to achieve evidence in favour of the increase to
p + 1 at the usual 5 per cent threshold, we require

� ln L = − ln 0.05 + 0.5 ln N , (46)

which is between 5 and 8 for the number of cells considered here.
An unequivocal detection of stochasticity thus apparently requires
a likelihood ratio of between r LN �= 1 and the best r LN = 1 model
in excess of λ � exp(5) to exp(8).

Monte Carlo simulations may be used to check the validity of
this analytic method. This is computationally expensive, so only an
upper limit may be set on the significance of an observed likeli-
hood ratio. We create 40 mock data sets following a power-law bias
model convolved with a Poisson distribution, defining the mean
cell counts, number of cells, one-point PDF fit parameter σ E and
model parameter bpow to emulate a range of data sets. To these we
fit both power-law and bivariate lognormal models with the usual
maximum-likelihood fitting procedure. This allows us to assess the
largest likelihood ratio that should arise by chance if the true model
is, in fact, a perfect power-law bias. The results suggest a substan-
tially smaller critical value is required than equation (46), closer to
� ln L = 1 to reject the model at the 95 per cent confidence limit. It
therefore appears that the assumptions used to derive the Bayesian
information criterion do not apply to this problem.

5.3.2 Kolmogorov–Smirnov test

Although the likelihood ratio test can eliminate one model in favour
of another, it cannot tell us how well the preferred model fits the
data. A Kolmogorov–Smirnov (KS) test can be used to test for a dif-
ference between an observed and modelled cumulative probability
distribution. This test provides the probability that the data are drawn
from the model probability distribution, with a low probability rep-
resenting a poor fit. A resulting probability above approximately 0.1
is generally accepted as a reasonable fit, as the KS test is unable to
rule out the model being the true underlying distribution at greater
than 90 per cent confidence. Strictly the test becomes invalid once
the data has been used to fix any free parameters of the model, as
in this method (Lupton 1993). However, as long as the number of
data points is much greater than the number of free parameters any
effects should be small.

To transform our bivariate distribution to a one-dimensional vari-
able on which we can perform the standard KS test, we create in-
tegrated probability distributions from both the model and the data,
integrating within constant model probability contours centred on
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Table 2. Completeness limits, total number of cells and average cell counts
for each data set after corrections for completeness have been applied. Note
that numbers do not scale exactly as L3 due to edge effects.

Cell size (Mpc) Compl. No cells 〈N E〉 〈N L〉
Colour 10 0.7 11 423 1.5 1.8

15 0.7 3019 5.1 6.3
20 0.7 1104 12.1 14.6
25 0.7 484 25.6 30.1
30 0.7 234 41.3 48.6
35 0.6 169 57.4 70.7
40 0.6 115 88.3 105.4
45 0.6 72 125.9 149.2

η 10 0.7 9668 1.9 1.9
15 0.7 2567 6.5 6.3
20 0.7 930 15.3 14.7
25 0.7 404 32.1 30.2
30 0.7 187 54.2 49.6
35 0.6 115 71.8 71.4
40 0.6 74 106.4 108.7

the position of maximum probability. This gives cumulative proba-
bility distributions for model and data from which the KS probability
(that the data follow the same underlying distribution as the model)
can be derived.

The KS test has been generalized to bivariate analyses by
Peacock (1983) and Fasano & Franceschini (1987). However, this
two-dimensional KS test was found to lack power compared with
the previous method for the present application.

6 R E S U LT S

Table 2 summarizes the details of each of our samples, including
the average count per cell and the completeness limit. The following
sections look in detail at the univariate and bivariate model fits to
each data set. In Section 6.2.3 we investigate the scale dependence
of non-linearity and stochasticity in the 2dFGRS. In Sections 6.3
and 6.4 we discuss the origin of the stochasticity and perform some
consistency checks on the results.

6.1 One-point probability distributions

Fig. 5 shows the bivariate distributions of cell counts, together with
the one-point distribution functions for a range of cell sizes. Before
we consider the bivariate distributions further, we look in detail at
the individual lognormal fits to these one-point distributions. We fit
a lognormal distribution convolved with Poisson noise to the early
and late number counts individually, using the method described in
the previous sections. The best-fitting lognormal models are shown
overplotted in the figure. It can be seen that on large scales the
lognormal model alone fits the data well, but on small scales the
deviation due to discreteness is substantial. For this reason it is
important to account for shot noise in the fitting procedure.

In order to assess the Poisson-sampled lognormal model quan-
titatively, we create many Monte Carlo cells with best-fitting pa-
rameters and expected number counts to match each data set. We
allow for completeness effects by randomly assigning each cell a
completeness value from a Gaussian distribution of width and mean
equal to those of the data set. Fig. 6 shows the distributions of
early-type galaxies and Monte Carlo cells with matching parame-
ters. Overplotted are the best-fitting lognormal model (dashed line)

and a lognormal curve with variance derived directly from the data
(dotted line, see Section 6.5).

We can now compare our MC data with our true data through a KS
test. For large cells (� 25 Mpc) we find KS probabilities in excess of
0.8, but as cell size decreases the KS probabilities decrease. On the
smallest scales of 10 Mpc we obtain KS probabilities of ∼10−9 and it
is this poor model fit that causes the lognormal model to overestimate
variances in comparison with direct methods. The figure shows there
to be an excess of data cells with moderate overdensities compared
with the best-fitting lognormal model, particularly on the smallest
scales. In very underdense regions the figure shows the dotted (direct
variance) curve to lie below the dashed (fitted) curve. This results
in an underprediction of the number of cells containing zero or one
galaxy when using the direct variance method (as discussed in more
detail by Conway et al. 2004).

6.1.1 Failures of the Poisson-sampled lognormal distribution

The discrepancy between the observed and predicted distributions
of cell counts shows that at least one of our two assumptions con-
cerning the galaxy field is incorrect. The lognormal distribution is
simply a convenient functional form that has been shown to fit galaxy
distributions from previous surveys (e.g. Hamilton 1985; Kofman
et al. 1994) and N-body matter distributions successfully (Kofman
et al. (1994); Kayo, Taruya & Suto (2001) and references therein).
Deviations from this simple model are evident in detailed numerical
simulations (e.g. Bernardeau & Kofman 1995), and at some level
at least we would expect to see such deviations in our data. Various
alternative distributions have been suggested in the literature such as
the skewed lognormal, negative binomial or Edgeworth expansions
(see also Sheth, Mo & Saslaw 1994; Valageas & Munshi 2004).

However, the fact that the model fails in detail on scales at which
the shot noise dominates the distribution in underdense regions sug-
gests that the Poisson sampling hypothesis is at least partly to blame.
By attempting to fit the model to these underdense cells, the vari-
ance is increased and the moderately overdense regions are no longer
well fitted. On small scales the majority of cells contain zero or one
galaxy, hence the preference of the model to fit these cells and not
those containing more galaxies.

We hope to explore more complex models for the count distribu-
tion elsewhere. For the present application, there are two points to
make. The first is that cells of side approximately 10 Mpc are the
smallest that can sensibly be discussed with this approach; reduc-
ing the cell size would lead to distributions that are dominated by
discreteness effects. More importantly, it should be stressed that ana-
lytic models of this sort are not really physical. In the end, what mat-
ters is whether the 2dFGRS data match the predictions of a proper
calculation of galaxy formation. We carry out such a comparison at
the end of the paper, and the results of a Poisson-sampled lognormal
fit are a convenient statistic to use for this purpose. Provided true
data and mock data are treated identically, small imprecisions in the
function used for the fit are irrelevant.

6.2 Joint distributions and biasing models

Each of the three models in Section 2 is fitted to the data sets de-
scribed in Table 2. Best-fitting parameters for the models are es-
timated simultaneously through the maximum-likelihood method
of Section 5.1. Table 3 shows the best-fitting parameter values for
the two deterministic models, together with log-likelihood differ-
ences between the model and the bivariate lognormal model. The
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Figure 5. On the left, the bivariate counts-in-cells distributions with early- and late-type galaxies are shown classified by colour. The points mark density
values of individual cells, and from top to bottom L = 15-, 25- and 35-Mpc cells are shown. 1D projections of the distributions are shown for early types
(centre) and late types (right), to which a Poisson-sampled lognormal model has been fitted. The best–fitting lognormal curves are overplotted (dashed line).
As a result of the logarithmic axes, a bin for cells containing zero galaxies has been artificially positioned on the horizontal axis. Note the discreteness of the
galaxy counts: the actual number of galaxies contained in the cells is indicated by the numbers over the 1D distributions. Further note the survey completeness
effects on smaller counts per cell, causing the spread of points around the mean value. Correcting zero counts for completeness is non-trivial and is not included
in this analysis, hence there is no spread of these points.

values of bpow and blin clearly show how early-type galaxies are
more clustered than late-type galaxies, as is well known. Table 4
gives the best-fitting parameter values and errors for the stochastic
bias model. The quoted errors are determined through multivariate
Gaussian fits to the likelihood surface, which were found to agree
well with Monte Carlo error estimates.

Fig. 7 shows the joint probability distribution of the data for L =
20-Mpc cells, together with Monte Carlo realizations of the best-
fitting linear, power-law and bivariate lognormal models for compar-
ison. The Monte Carlo realizations include completeness effects by
randomly selecting a completeness value for each cell from a Gaus-
sian with mean and width equal to that of the true distribution of cell
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Figure 6. The univariate distributions of early-type galaxies for L = 10-, 15-, 20- and 25-Mpc cells [empty, red (black) histogram], together with the distribution
of Monte Carlo cells [hatched, blue (grey) histogram] with parameters equal to those obtained from fitting a Poisson-sampled lognormal distribution to the data
cells. Completeness effects are modelled as a Gaussian with variance equal to that found in the data set. The dashed curve shows this best-fitting lognormal
distribution; the dotted curve shows the lognormal curve with variance equal to that measured directly from the data. Both variances are given in the upper
right-hand side, together with KS probabilities that the Monte Carlo cells are drawn from the same distribution as the data cells. As a result of the logarithmic
axes, a bin for cells containing zero galaxies has been artificially placed on the horizontal axis. For L = 10 Mpc approximately 60 per cent of the cells contain
zero early-type galaxies, and the vertical axis has been truncated to allow a better view of the remaining bins. Note the discreteness of the data and simulations,
as discussed in the caption to Fig. 5.

completeness. This scale is chosen to illustrate all the properties of
the data and the figures clearly show the shot noise in underdense
regions, together with the effects of survey incompleteness. By eye
we can see the differences between the linear and power-law bias
models, and the effect of stochasticity in the bivariate lognormal
model. The best-fitting linear model has a mean bias closer to unity
at high density, and cannot fit the non-linearity seen in the data. The
power-law model corrects for this, but the scatter about the mean
is insufficient to match the data. The stochasticity introduced by
the bivariate lognormal model is evident and is matched well by
the data. The likelihood ratios shown in Table 3 quantify the dif-
ferences and show that on all scales the bivariate lognormal model

gives significantly better fits compared with deterministic biasing
models.

We now repeat this analysis, splitting galaxies by spectral type
η, rather than by colour. The colour split allows a larger sample of
cells to be included in the analysis, but Fig. 2 shows that a divi-
sion by spectral type does not always select the same galaxies as
a colour split, so it is interesting to see how the results compare.
The second section of Tables 2–4 give details of the data sets and
results of the model fits to cells with galaxies classified by η. The
joint distributions for 20-Mpc cells are shown in Fig. 8.

Comparing the results for 20-Mpc cells, the results for colour
and η are generally similar. The likelihood ratios again favour the
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Stochastic relative bias in the 2dFGRS 259

Table 3. The best-fitting deterministic biasing models parameters to each data set. The level of non-linearity given the model is given by b̃/b̂, which is unity
by definition for the linear model. The penultimate column shows the log-likelihood differences between the best-fitting linear or power-law models and the
bivariate lognormal model. A positive value indicates that the bivariate lognormal model is a better fit to the data. The final column shows how many cells must
be removed to reduce the power-law likelihood ratio to ∼ exp(1) (Section 6.3).

Cell size Model ωE blin or bpow b̂ bvar r lin b̃/b̂ L − LLN Outliers

Colour 10 Linear 1.41 0.93 0.93 0.93 1.00 1.000 291.1
Power-law 1.51 0.78 0.56 0.58 0.96 1.044 75.6 159

15 Linear 1.23 0.91 0.91 0.91 1.00 1.000 185.0
Power-law 1.26 0.77 0.61 0.63 0.97 1.030 55.5 86

20 Linear 1.04 0.91 0.91 0.91 1.00 1.000 133.6
Power-law 1.10 0.76 0.63 0.65 0.98 1.024 37.9 40

25 Linear 0.92 0.91 0.91 0.91 1.00 1.000 87.1
Power-law 0.94 0.76 0.67 0.68 0.98 1.016 41.3 34

30 Linear 0.80 0.92 0.92 0.92 1.00 1.000 39.3
Power-law 0.77 0.77 0.72 0.72 0.99 1.009 22.4 18

35 Linear 0.73 0.92 0.92 0.92 1.00 1.000 16.0
Power-law 0.70 0.76 0.71 0.72 0.99 1.008 6.6 6

40 Linear 0.67 0.95 0.95 0.95 1.00 1.000 18.1
Power-law 0.68 0.81 0.77 0.78 1.00 1.005 12.4 8

45 Linear 0.59 0.97 0.97 0.97 1.00 1.000 12.9
Power-law 0.59 0.86 0.83 0.83 1.00 1.002 10.4 1

η 10 Linear 1.43 0.92 0.92 0.92 1.00 1.000 238.1
Power-law 1.51 0.77 0.55 0.58 0.96 1.046 49.8 110

15 Linear 1.22 0.91 0.91 0.91 1.00 1.000 131.1
Power-law 1.24 0.77 0.64 0.65 0.97 1.026 35.6 58

20 Linear 1.03 0.90 0.90 0.90 1.00 1.000 91.9
Power-law 1.07 0.75 0.67 0.68 0.98 1.019 17.9 25

25 Linear 0.93 0.90 0.90 0.90 1.00 1.000 70.3
Power-law 0.96 0.74 0.65 0.67 0.98 1.018 23.7 21

30 Linear 0.81 0.90 0.90 0.90 1.00 1.000 28.4
Power-law 0.81 0.73 0.67 0.68 0.99 1.013 13.3 9

35 Linear 0.74 0.90 0.90 0.90 1.00 1.000 13.6
Power-law 0.75 0.69 0.65 0.66 0.99 1.013 4.3 2

40 Linear 0.64 0.95 0.95 0.95 1.00 1.000 4.8
Power-law 0.65 0.83 0.82 0.82 1.00 1.003 1.2 0

Table 4. The best-fitting bivariate lognormal model parameters to each data set. Errors are shown, derived from Gaussian fits to the parameter likelihood
surface. �(rLN) is derived from propagation of �[(1−rLN

2)1/2]. The remaining columns give the average biasing parameters. The Appendix gives the analytic
solutions for each parameter in the case of the bivariate lognormal model. The final two parameters measure the non-linearity and stochasticity of the model
(equations 13 and 14).

Cell size ωE �(ωE) ωL �(ωL) rLN �(rLN) σ E σ L r lin b̂ bvar b̃/b̂ σb/b̂

Colour 10 1.52 0.01 1.20 0.01 0.958 0.004 3.01 1.80 0.88 0.52 0.55 1.054 0.44
15 1.26 0.02 0.99 0.02 0.966 0.004 1.99 1.29 0.92 0.60 0.62 1.033 0.35
20 1.10 0.02 0.85 0.02 0.969 0.005 1.54 1.02 0.93 0.62 0.64 1.026 0.31
25 0.95 0.02 0.73 0.02 0.959 0.007 1.21 0.84 0.93 0.64 0.66 1.020 0.34
30 0.78 0.03 0.61 0.03 0.962 0.009 0.92 0.68 0.94 0.69 0.70 1.011 0.31
35 0.71 0.04 0.54 0.03 0.976 0.009 0.81 0.58 0.96 0.70 0.70 1.009 0.24
40 0.68 0.05 0.55 0.04 0.971 0.009 0.76 0.60 0.96 0.75 0.75 1.006 0.27
45 0.60 0.04 0.51 0.04 0.970 0.010 0.66 0.55 0.96 0.80 0.80 1.003 0.27

η 10 1.51 0.02 1.18 0.01 0.963 0.005 2.95 1.75 0.89 0.53 0.56 1.052 0.40
15 1.23 0.02 0.98 0.02 0.966 0.005 1.89 1.27 0.92 0.62 0.64 1.029 0.34
20 1.07 0.02 0.82 0.02 0.976 0.005 1.47 0.98 0.94 0.63 0.64 1.025 0.27
25 0.92 0.02 0.70 0.02 0.966 0.007 1.16 0.79 0.94 0.64 0.65 1.019 0.31
30 0.81 0.05 0.60 0.04 0.965 0.010 0.97 0.66 0.94 0.64 0.65 1.016 0.30
35 0.73 0.04 0.51 0.03 0.980 0.009 0.84 0.55 0.96 0.63 0.64 1.015 0.22
40 0.66 0.04 0.54 0.04 0.988 0.008 0.73 0.58 0.98 0.78 0.79 1.004 0.17

bivariate lognormal model over our two deterministic biasing mod-
els, and suggest a slightly smaller difference between the stochas-
tic and deterministic models than is found in the colour data set.
This is verified by the smaller stochasticity found in the best-

fitting bivariate lognormal model at all scales. Unlike for the colour
data sets, the power-law bias is only marginally inconsistent with
the data on the largest scales studied here. This difference be-
tween colour and η type results may reflect a physical difference
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260 V. Wild et al.

Figure 7. On the top left, the bivariate counts-in-cells distributions for 20-Mpc length cells, with early- and late-type galaxies classified by colour. The points
mark density values of individual cells. The other three panels show Monte Carlo realizations of the best-fitting linear, power-law and bivariate lognormal
models. The realizations are created to match the data as far as possible, with equal cell numbers and average number counts. Cell completeness is included
by assuming the distribution of cell completeness to be a Gaussian of mean and width equal to that of the data cells. In each panel the dashed line shows the
b = 1.0 case, and the dash-dot line shows the mean biasing of each model (for the top left-hand plot, the dash-dot line shows the mean biasing of the best-fitting
bivariate lognormal model). Poisson sampling of the galaxies is assumed in all cases. Note that for all but b = 1.0, the linear bias appears as a curve on the
log–log plots. As a result of the logarithmic axes, cells containing zero early- or late-type galaxies have been artificially positioned.

in the relative biasing relations, but firm conclusions are not yet
possible.

6.2.1 The goodness-of-fit statistics

Table 3 shows the log-likelihood differences (−ln λ) of the parame-
ter fits, taking the bivariate lognormal model as our null hypothesis.
In all cases the linear model provides a worse fit to the data than
the power-law model, and the power-law model provides a worse
fit than the bivariate lognormal model. This latter statement may,
however, be due to the addition of an extra free parameter to the
model (Liddle 2004). To establish the significance of the differ-
ence between the power-law and bivariate lognormal model we can

make use of the theory given in Section 5.3. For example, for L =
20-Mpc cells and assuming the Bayesian Information Criterion
(equation 46), we would require a likelihood ratio in excess of
exp(6.5) to claim that the bivariate lognormal model provides a sig-
nificantly better fit than the power-law model with r LN =1. However,
as stated earlier, Monte Carlo simulations of the power-law model
show that a less stringent likelihood ratio in excess of � exp(1) is
all that is required. We measure a likelihood ratio of exp(38) for
the data set with galaxies classified by colour, and exp(18) for η

classification, a highly significant result in both cases.
Although the likelihood ratios favour of the bivariate lognormal

distribution over the two deterministic models, they do not tell us
how well the best-fitting distribution matches the data. For this we
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Stochastic relative bias in the 2dFGRS 261

Figure 8. Same as in Fig. 7, with galaxies classified by η type.

turn to the KS statistic described in Section 5.3.2 On scales L �
15 Mpc our KS statistic accepts the model with a probability greater
than 0.5. On the smallest scales studied here we find that this prob-
ability decreases, in line with the trend for the univariate lognormal
distribution (Section 6.1).

6.2.2 Stochasticity and non-linearity

In order to quantify the non-linearity and stochasticity of the joint
distribution of early- and late-type galaxies we assume that the bi-
variate lognormal model is an accurate representation of the data.
In our analysis the log-density correlation coefficient rLN provides a
complete measure of the stochasticity; to aid comparison with other
work we compute the mean biasing, its non-linearity and the aver-
age biasing scatter of equations (8)–(12). For clarity we concentrate
briefly on the results for 20-Mpc cells, shown in the third line of
Table 4. These indicate that, whilst the non-linearity (equation 13) is
only 1.03, the stochasticity (equation 14) is 0.31. This high stochas-

ticity is reflected in the deviation of rLN from unity, and the low
linear correlation coefficient of r lin = 0.93. It is important to note
that these statistics account for Poisson noise, as the models were
convolved with a Poisson distribution before being fitted to the data.

Table 3 shows for comparison some biasing statistics for our two
deterministic models. It can be seen that a similar non-linearity is
measured by the power-law model, whilst the linear correlation co-
efficient remains close to unity, reflecting the inability of the model
to measure stochasticity. The best-fitting linear bias model has a
mean biasing parameter closer to unity, indicating that by assuming
this model previous studies may have underestimated the magnitude
of relative biasing.

It may be considered surprising that the correlation parameter
rLN can be measured so precisely that r LN = 0.97 can be clearly
distinguished from r LN = 1. The reason for this can be seen by
examining the expression for the bivariate lognormal distribution
(equation 33), in which the scatter in δL at fixed δE is proportional
to S ≡

√
1 − r 2

LN. This is a more meaningful quantity than the
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262 V. Wild et al.

Figure 9. The bivariate counts-in-cells distributions for 15- (top), 25- and 35-Mpc length cells. The left-hand panel shows the data with early and late galaxies
classified by colour. Larger points indicate the cells identified as outliers from r LN = 1 (see Section 6.3). The central column shows a Monte Carlo simulation
of the best-fitting power-law model and the right-hand column shows the best-fitting bivariate lognormal model. The dashed line indicates a mean biasing of
b = 1.0 and the dot-dash line shows the best-fitting mean bias.

correlation coefficient, but it lacks a standard name. In this context,
the obvious term for S would be ‘stochasticity’, but this is already
taken and we resist the temptation to expand the terminology further.
The stretched nature of this measure of correlation is quite extreme
(as noted independently by Seljak & Warren 2004): S = 0.5 corre-
sponds to r LN = 0.87. Therefore, r LN = 0.87 is effectively half-way
to no correlation at all. This is why even a correlation as high as
r LN = 0.97 is noticeably imperfect in terms of density–density plots.

6.2.3 Scale dependence

We now look at how our results depend on scale. This is interest-
ing because it may potentially distinguish whether the efficiency of

galaxy formation in a particular region of space is affected by local
or non-local factors. Examples of local factors could be density, ge-
ometry, or velocity dispersion of the dark matter. Non-local factors
could involve, for example, effects of ionizing radiation from the
first stars or QSOs on galaxy formation efficiency, causing coherent
variation over larger scales than possible from local factors.

Fig. 9 shows the bivariate distributions for 15-, 25- and 35-Mpc
cells with galaxies split by colour. The likelihood ratio tests (Table 3)
show that the bivariate lognormal bias model provides a significantly
better fit to our data than both deterministic models on all scales for
colour selection and all but the largest scales when classifying by η.

The non-linearity and stochasticity as a function of scale are plot-
ted in Fig. 10, with errors derived by propagation from those shown
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Stochastic relative bias in the 2dFGRS 263

Figure 10. The scale dependence of non-linearity and stochasticity in the 2dFGRS. The solid line shows results for galaxies classified by colour and dotted
line for galaxies classified by η type. The circles show the two semi-analytic data sets. Mock 1 is described in the text as the ‘superwind’ model, and mock 2 as
the ‘low-baryon’ model. The open diamonds indicate values measured for the colour data set using direct variance estimates, where they differ by more than
1σ from the results derived from model fitting (see Section 6.5). For clarity, errors are omitted for the η and second mock data sets.

in Table 4. The commonly quoted parameters bvar and r lin, which
combine both non-linearity and stochasticity, are plotted in Fig. 11
to ease reference with results in the literature. On small scales
(�20 Mpc) the average biasing statistics suffer systematic errors
from overestimates of the variance by the Poisson-sampled lognor-
mal model fit, as discussed in detail in Section 6.5. To indicate
the magnitude of these effects, open diamonds show results for the
colour data set using direct variance estimates, where the difference
is greater than 1σ . It can be seen that although both non-linearity and
bvar show noticeable change with scale, this can be mostly explained
by the poor fit of the model. There is little effect on stochasticity,
and both mocks and data are affected in the same way, making com-
parison practical. The non-linearity reaches <1 per cent by around
35 Mpc with results for colour and η classification barely distin-
guishable. However, a little care is needed in interpreting this result:
negligible ‘non-linearity’ does not mean that linear bias is a good
fit. As much as anything, this is a statement that the amplitude of
fluctuations declines for large L, so most cells have |δ| � 1.

The stochasticity also declines, although on large scales the errors
prevent distinction between a flat or declining function with scale.
There is a tendency for the stochasticity of the η data sets to lie

a little below that of the colour data sets, but this is not significant
within the errors. The dashed and dash-dot lines show the results for
two semi-analytic mock universes which will be discussed in detail
in Section 7.2. We can immediately note the encouraging general
agreement: stochasticity is clearly expected at approximately the
detected level.

6.2.4 Division by luminosity and redshift

By splitting galaxies by their luminosity we can investigate whether
the effects that we find in the previous sections could be due to the
luminosity difference of the galaxy types. By dividing galaxies at
M − 5 log10(h) = −19.5, we form two similar sized groups with
Class 1 being more luminous than Class 2. The models are fitted
as before by replacing E (L) with Class 1 (2). In contrast to the
outcome when galaxies are divided by type, the likelihood ratios
between the best-fitting power-law and bivariate lognormal models
are small on all scales, ranging from 0 to 3. We find rLN to be roughly
constant with a value of ∼0.99 for the best-fitting bivariate lognor-
mal models. If stochasticity is caused by some variable other than
the local density during galaxy formation, then perhaps luminosity
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264 V. Wild et al.

Figure 11. The scale dependence of the ratio of variances, bvar, and the
linear correlation coefficient, r lin. Symbols as in Fig. 10.

Table 5. Colour and η samples with cell length L = 20 Mpc are each split
into two redshift groups at z = 0.09. This table shows results for the bivariate
lognormal model fit to each subsample.

ωE �(ωE) ωL �(ωL) rLN �(rLN)

Colour Low z 1.11 0.03 0.85 0.03 0.956 0.010
High z 1.11 0.03 0.85 0.03 0.974 0.006

η Low z 1.10 0.03 0.85 0.03 0.985 0.007
High z 1.07 0.03 0.82 0.03 0.976 0.007

is less dependent on this variable than galaxy type and colour. Other
explanations could be that our volume-limited sample is too shallow
to find the expected bimodality in luminosity, and the position of
our boundary between bright and faint galaxies is arbitrary.

It is also of interest to see if the results are independent of red-
shift. We divide the survey at z = 0.09 and fit the models to both
high- and low-redshift galaxies using a cell length of L = 20 Mpc.
Table 5 shows the best-fitting bivariate lognormal parameters for
galaxies split by colour and η for both redshift groups. As a result
of the fibre apertures of the 2dF instrument we may expect some
redshift dependence for galaxies classified by η (see Section 3.2.1),
yet precise predictions are difficult. We certainly see no difference
within the errors between these two redshift groups, and the differ-
ence for colour classification cannot be attributed to such effects.
It is possible that the changing errors on the colour at high redshift
contribute to the decrease in stochasticity, although evolution cannot
be ruled out. There is certainly room for further investigation with
forthcoming larger redshift surveys.

6.2.5 Comparison with other 2dFGRS results

This work has been carried out in conjunction with that of Conway
et al. (2004) who investigate the variance and deviation from lin-
ear bias in the 2dFGRS NGP and SGP regions using flux-limited
samples, including a counts-in-cells analysis. They find similar dis-
crepancies between the Poisson-sampled lognormal model and the
data, investigating the causes and magnitude of the problem in de-
tail. After accounting for this effect in both analyses the results agree
within the 1σ errors where comparable: Conway et al. find 1/bvar =
1.25 ± 0.05, and non-linearity (b̃/b̂) of a few per cent on the small-
est scales measured. Our results for bpow agree, but are consistently
higher for blin. This is due to different fitting procedures; Conway
et al. give greater weight to overdense regions.

Madgwick et al. (2003a) measure the square root of the ratio
of the correlation functions of early- and late-type galaxies to be
around 1.2 on their largest scales of 8 < r < 20 h−1 Mpc. Their
bias parameter corresponds to 1/

√
b̂ in the notation of Section 2.1

(DL99). This gives a value for b̂ a little higher than our results of
Table 4, but which is entirely consistent when lognormal variance
estimates are replaced by direct measures as in Section 6.2.3

6.3 Origin of the stochasticity signal

Before the detection of stochastic bias is accepted, and we proceed to
confront the result with theoretical models, a degree of scepticism is
in order. We have seen that some regions of space have a number ratio
of early- and late-type galaxies that differs from the typical value
by too much to be consistent with Poisson scatter. Such an outcome
seems potentially vulnerable to systematics in the analysis as any
source of error in classifying galaxies could introduce extra scatter,
spuriously generating the impression of stochasticity. However, it is
not clear which way this effect would go. Suppose the survey finds
galaxies with perfect efficiency, but then assigns them a random
class. Any true initial stochasticity is erased by the classification
‘errors’ and we measure r LN = 1. In order to generate apparent
stochasticity where none is present we would need something more
subtle. Possibilities could include a perfect efficiency in detecting
early-type galaxies, but a fluctuating efficiency in finding late types;
a spatially varying boundary between early and late types; or large
variations in the survey selection function on scales smaller than the
cell length. To assess the possible contribution of this latter effect to
our measured stochasticity, we applied small-scale incompleteness
masks to semi-analytic data sets (see Section 7.2). The large-scale
stochasticity of these models was affected by less than 1σ .

Whether or not a spurious generation of stochasticity seems plau-
sible, it is worth looking more closely at the data to see how the signal
arises. In order to do this, we focus on the outliers from the relation
ln(1 + δL) ∝ ln(1 + δE), but a careful definition of an outlier is
required. We want to ask how much the numbers (N E, N L) differ
from their expectation values when clustering is included, but the
latter are unknown. Therefore, we take the best-fitting power-law
model with r LN = 1 and integrate over the distribution of densities
to calculate the probability for obtaining this outcome, P(N E, N L),
accounting for Poisson noise. The most outlying points are those
with the lowest values of P, and we remove these in succession un-
til the remaining cells are consistent with an r LN = 1 model. The
numbers of outliers in this sense are listed in Table 3, and Fig. 9
shows their positions on density–density plots.

Having identified the cells that provide the evidence for stochas-
ticity, we can examine their properties in more detail. Fig. 12 shows
the spatial distribution of the outlying cells within the 2dFGRS for
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Stochastic relative bias in the 2dFGRS 265

Figure 12. Wedge plots of the 2dFGRS volume-limited survey SGP region as for Fig. 3. Both early- and late-type galaxies are shown. Overplotted are cells
identified as causing the stochasticity signal, from thetop left: 10-, 15-, 20-, 25-Mpc cells.

a range of cell sizes, from which it can be seen that they are of-
ten associated with overdense regions. This should not be taken as
indicating that stochasticity is confined to such regions: given that
the degree of stochasticity is small, the cells that contain the most
galaxies will provide the best signal-to-noise ratio for the effect.
The colour distribution of galaxies in the outlying cells is shown in
Fig. 13, compared with the distribution of ‘normal’ cells. To allow
for non-linearity in the density–density relation we consider for the
comparison distribution only those cells with similar values of δE.
The distributions cover sensible ranges of colours, and the peaks
corresponding to early and late types appear to be in the correct
places. What causes these cells to be outliers is that the ratio of the
two populations differs greatly from what is typical, and it is hard to
see how this result can be in error. The completeness values in these
cells are typically 0.8, and yet we see variations in the early:late
ratio by more than a factor of 2. Moreover, similar variations are
seen whether we classify using colour or spectral type. We there-
fore conclude that these variations are a real property of the galaxy
distribution.

6.4 Consistency checks

We repeat the analysis for cells with galaxies classified randomly,
recovering a best-fitting bivariate lognormal model with r LN = 1
exactly. By fitting the bivariate lognormal model to Monte Carlo
simulated power-law mocks (Section 5.3), we can check for any
bias inherent in our fitting procedures. The best-fitting models have
mean r LN � 0.998, which is not significantly different from the
r LN = 1 of power-law deterministic bias.

6.5 Direct variance estimates

It is possible to determine the variance σ 2(L) directly without assum-
ing the lognormal model. Optimal power spectrum estimates per-
haps provide the most accurate determinations of variance (Tegmark
et al. 2004; Pen et al. 2003), however, for our purposes it suffices
to use a simpler method presented by Efstathiou et al. (1990). Their
estimator calculates �N = N − 〈N 〉 for each cell and subtracts the
Poisson variance from (�N)2 to form an estimate of σ 2 for each
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266 V. Wild et al.

Figure 13. The colour distribution of cells identified as causing the stochasticity signal (L = 20 Mpc, filled line). The left (right) plot shows all those cells
with an excess of red (blue) galaxies. The comparison plot (dashed line) is calculated from those cells with similar δE to the outlier cells, in order to account
for non-linearities.

Table 6. Different variance estimates and errors for early and late data sets defined by colour. (a) From our bivariate lognormal model fit with errors derived
from a multidimensional Gaussian fit to the likelihood surface; (b) Efstathiou et al. (1990) direct variance estimator and errors; (c) direct variance estimator
after using Monte Carlo simulations of lognormal fields to correct for bias due to non-Gaussianity, with rms errors from the simulations.

Cell size σ E
a �(σ E)a σ E

b �(σ E)b σ E
c �(σ E)c σ L

a �(σ L)a σ L
b �(σ L)b σ L

c �(σ L)c

10 3.014 0.074 1.806 0.016 1.814 0.142 1.799 0.037 1.321 0.013 1.323 0.059
15 1.987 0.060 1.462 0.021 1.472 0.129 1.295 0.033 1.054 0.016 1.056 0.056
20 1.542 0.057 1.242 0.028 1.253 0.126 1.024 0.035 0.879 0.021 0.882 0.055
25 1.214 0.048 1.008 0.034 1.019 0.107 0.839 0.032 0.746 0.026 0.750 0.054
30 0.922 0.045 0.877 0.042 0.890 0.102 0.677 0.033 0.659 0.032 0.663 0.061
35 0.807 0.064 0.728 0.041 0.736 0.087 0.584 0.042 0.547 0.032 0.551 0.050
40 0.764 0.067 0.716 0.049 0.727 0.095 0.596 0.049 0.557 0.038 0.563 0.061
45 0.657 0.054 0.547 0.047 0.557 0.071 0.546 0.044 0.467 0.041 0.473 0.058

cell. This is then averaged over all cells. The estimator only applies
in the case of a uniform survey, where 〈N〉 is the same for all cells.
For the general case of an incomplete survey, Efstathiou et al. derive
a slightly different estimator, assuming a Gaussian density field. In
fact, this is a poor assumption even on the largest scales considered
here. We use Monte Carlo realizations of lognormal fields to show
that their estimator for σ is biased low by around 1–2 per cent, and
has an uncertainty often several times larger than that expected for
the Gaussian model. Table 6 gives the direct variance estimates for
our data, with errors from both Efstathiou et al. (1990) and Monte
Carlo simulations.

Even accounting for the bias, these direct variance estimates re-
main generally 10–20 per cent lower than those estimated by fit-
ting a Poisson-sampled lognormal curve. For early-type galaxies in
L = 10-Mpc cells the discrepancy is nearly 40 per cent. Imposing
different weighting schemes during fitting can lower the lognormal
variance to meet the direct variance results (Conway et al. 2004), but
these have no significant effect on our measurement of stochasticity.

This failure of the lognormal model to recover the true variance
of the data may be due to the assumption of the Poisson clustering
hypothesis which we know to be incorrect in detail. On the smallest
scales our cells are largely shot-noise-dominated, and it is on these
scales that the discrepancy is greatest (see also Section 6.1.1). It

remains important to emphasize that the variance estimates given
throughout this paper are model dependent, and not to be taken as the
true variance of the galaxies in the survey, which can be estimated
more accurately through model-independent methods.

An unfortunate side effect of this difficulty in obtaining accu-
rate estimates for variance, is that the average biasing statistics
of Section 2.1 are dependent on σ (see also Section 6.2.3). Tests
show this to have little effect on stochasticity (σb/b̂), but on scales
�20 Mpc the non-linearity is overestimated. By replacing our mea-
sured variance with results obtained from bias-corrected direct es-
timation we find the non-linearity to decrease to around 2 per cent
for L = 10 Mpc, decreasing with scale gradually to match our mea-
sured values by L = 30 Mpc. The stochasticity is decreased by
approximately 2σ at L = 10 Mpc to around 0.39, but the effect is
insignificant on all other scales. These results may be compared with
the measurements of variance and deterministic bias in the 2dFGRS
using flux-limited samples over a slightly larger volume (Conway
et al. 2004).

This is a suitable point to discuss a subtlety of cell counts that
we have neglected so far. Variation in the survey mask is repre-
sented by 〈N〉 varying between cells. We have treated this as a sim-
ple variation in sampling efficiency that is uniform over the cell.
However, this cannot be precisely correct: where sampling of a cell
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is low because it encounters one of the larger drills in the input
catalogue, it would be more correct to assume a completely sampled
cell of smaller volume. We have explored this alternative extreme
by assuming that σ ∝ 〈N 〉−0.3, as expected for a ξ (r ) ∝ r−1.8 spec-
trum. As 〈N 〉 ∝ completeness, and the typical cell completeness is
approximately 0.8, the measured values of σ are increased by ap-
proximately 7 per cent, approximately a 1σ shift. This has no effect
on our detection of stochasticity, and because the ‘lost volume’ as-
sumption will not apply in all cases, we neglect the issue. Note that
estimates of cell variances derived from integration over correlation
functions or power spectra would be completely independent of this
issue.

7 C O M PA R I S O N W I T H S I M U L AT I O N S

In order to interpret our measurements of stochastic bias, we need to
make a comparison with theory. In practice, this means considering
the results of numerical simulations that are sufficiently detailed to
predict the spatial distributions of the different classes of galaxy.
There are currently two main methods of simulating the large-scale
structure of the visible Universe: semi-analytic or hydrodynamic.
We consider each in turn.

7.1 Previous work

Somerville et al. (2001) used semi-analytic models to measure the
relative bias between early- and late-type galaxies (as defined by
bulge to total luminosity) and red and blue galaxies on scales of r =
8 h−1 Mpc. They set a limiting magnitude of MB − 5 log h � −18.4,
and split galaxies by colour at B − R = 0.8, making their samples
reasonably comparable to our data for cells of L = 20 Mpc. Our
value of bvar = 0.66 (Table 4) falls in between their values of 0.77 for
late/early types and 0.55 for blue/red galaxies. They find r lin = 0.87
for both subgroups, slightly lower than our values for both colour and
spectral type. Unfortunately the results are not split into stochasticity
and non-linearity, making it difficult to make further comparisons.
It is, however, interesting that we find a lower amplitude of relative
bias between the two colour groups than is seen in these models.

The hydrodynamic simulations of Yoshikawa et al. (2001) clas-
sify galaxies by their formation redshift, and are smoothed with
top-hat spheres of radius 8 h−1 Mpc. By using this classification
scheme, hydrodynamic models approximate early-type galaxies as
those that form at high redshifts via initial starbursts, whereas late-
type galaxies have a lower formation redshift and undergo slower
star formation. They find that old galaxies are positively biased with
respect to matter with a linear correlation coefficient of less than 1,
whereas young galaxies are slightly antibiased with a correlation co-
efficient closer to 1. They measure the relative bias between galaxy
types by brel

ξ ≡ (ξ young/ξ old)1/2, where ξ young(ξ old) is the two-point
correlation function of the young (old) galaxies. This is equivalent
to blin. They obtain values of between 0.5 and 0.66 for scales of
1 < r < 20 h−1 Mpc, lower than our equivalent values for the linear
biasing model with L � 25-Mpc cells (Table 3). Once again results
for stochasticity and non-linearity are not quoted for the relative
bias.

7.2 Preliminary mock comparison

None of this past work really allows a direct comparison with our re-
sults, so we generated two new theoretical ‘data sets’ from the results
of large semi-analytic calculations carried out using the ‘Cosmology
machine’ supercomputer at Durham. The background model is that
deduced from the simplest WMAP+2dFGRS analysis of Spergel

et al. (2003): flat, �m = 0.27, �b = 0.045, h = 0.72, n = 0.97,
σ 8 = 0.8, applying the semi-analytic apparatus of Cole et al. (2000)
to a simulation with N = 5003 particles in a box of side 250 h−1

Mpc. As shown by, for example, Benson et al. (2003), a problem
faced by such modelling is a tendency to overproduce massive galax-
ies, as a result of excessive cooling arising from the higher baryon
density now required by CMB+LSS. This problem is particularly
severe for disc (late-type) galaxies. The first mock adopted the ‘su-
perwind’ approach of Benson et al. (2003) in an attempt to alleviate
this problem, but the cure is not total. The second mock attempted
to reduce cooling by retaining the low baryon density of Cole et al.
(2000). Although this conflicts with CMB data, it provides a useful
means of comparison. For this application, we took an empirical
approach in which a monotonic shift in luminosity was applied to
force the models to have the observed luminosity function as in
Madgwick et al. (2002). The model colour distribution was bimodal
to a realistic degree, so this shift was applied separately to generate
model distributions of early- and late-type galaxies in which the
global luminosity functions were correct. The resultant mock cell
counts were analysed identically to the real data.

In some respects, these simulations match the real data very well.
For the low-baryon model, the amplitude of the cell variances for
early-type galaxies agree to within 3 per cent on small scales and
10 per cent on large scales. The superwind model variances agree
to within 10 per cent on all scales. The relative bias of the low-
baryon model agrees to within 10 and 15 per cent with observation,
and the superwind model to within 10 and 20 per cent. Significant
stochasticity and non-linearity is also required, which can be mea-
sured accurately as a function of scale because we are able to use
more mock cells than are available in the real data. The mocks are
affected in a similar manner to the data by the discrepancy between
direct estimates of variance and those from lognormal model fits. On
small scales this significantly increases our estimated non-linearity;
as the effect is equivalent between mocks and data, however, a di-
rect comparison between them remains instructive. Fig. 10 shows
the resulting stochasticity and non-linearity as a function of scale,
compared with that of the 2dFGRS data. The impression is that the
mock results show a greater non-linearity than the real data on small
scales, while stochasticity is well matched within the errors.

Given the known imperfect nature of the semi-analytic simula-
tions (e.g. the failure to match luminosity functions exactly), the cor-
rect attitude is probably to be encouraged by the degree of agreement
with the data. It is certainly plausible that the existing calculations
contain all the relevant physical contributions to bias, but perhaps
not yet in quite the right proportions. As is usual with such numer-
ical comparisons, this raises the question of whether the issue of
stochasticity can be understood in a more direct fashion. In the end,
the effects we are seeing must be reducible to the way in which
the early:late ratio varies between and within virialized systems of
different mass, so that in effect we are dealing with a more general
version of the morphological segregation that is familiar from the
study of rich clusters (Narayanan, Berlind & Weinberg 2000). We
intend to pursue this in more detail elsewhere, using the catalogue
of galaxy groups derived from the 2dFGRS by Eke et al. (2004).

8 S U M M A RY A N D C O N C L U S I O N S

We have presented fits of three relative biasing schemes to joint
counts-in-cells distributions of 2dFGRS galaxies, separated by both
colour and spectral type η. Each scheme is convolved with a
Poisson distribution to account for statistical ‘shot noise’. Our first
two models present two alternative types of deterministic biasing:
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linear and power-law bias. Linear bias is an important concept in
cosmology and many results are linked to it, but it is not physically
plausible as it allows negative densities. Power-law bias presents
a simple cure for this problem, but still has little physical moti-
vation. With the advent of large semi-analytic and hydrodynamic
simulations, interest has grown in ‘stochastic’ bias models. Bias
could be determined by parameters other than the local overdensity
of the dark matter, and considerable scatter could occur in the rela-
tion. Galaxy distributions have previously been measured to be well
approximated as lognormal, therefore a bivariate lognormal distri-
bution seems a natural model for relative bias between galaxy types.
This model incorporates stochasticity and non-linearity in a well-
defined manner, which is mathematically simple and consistent with
observation.

To account for the discrete nature of galaxies, the Poisson sam-
pling hypothesis is assumed, and all models are convolved with a
Poisson distribution. On small scales where our cell counts become
shot-noise-dominated, we find this hypothesis to fail, causing over-
estimates of variance compared with direct estimation methods. The
main symptom of the discrepancy is a number of completely empty
cells that exceeds the Poisson-sampled lognormal prediction. This
is found not to affect our results for stochasticity, and the same effect
is seen in the simulations, but it emphasizes the need for a greater
understanding of Poisson statistics in relation to galaxy clustering.

We have detected a significant deviation from r LN = 1 in the
2dFGRS and confirmed this detection of stochasticity through like-
lihood ratio tests, Kolmogorov–Smirnoff probability testing and
Monte Carlo simulations. We have measured stochasticity at a level
of σb/b̂ = 0.44 ± 0.02 or r LN = 0.958 ± 0.004 on the smallest scales
(10 Mpc), declining with increasing cell size. The non-linearity of
the biasing relation is less than 5 per cent on all scales. The small
measured values of stochasticity and non-linearity support the use
of galaxy redshift surveys for studies of the large-scale distribution
of matter in the Universe, and the measurement of cosmological
parameters. However, as precision in cosmology increases and new
techniques are developed, the effects of stochastic bias on param-
eter estimation should be understood. For example, studies of cos-
mology through weak gravitational lensing requires knowledge of
non-linear and stochastic bias (Seljak & Warren 2004). Our results
for r lin on 10-Mpc scales are consistent within the (large) errors
with galaxy–mass correlations measured by weak-lensing surveys
(Hoekstra et al. 2002) on the largest scales probed.

A comparison with semi-analytic simulations shows a similar
variation of non-linearity and stochasticity with scale. The ampli-
tude of stochasticity appears to be a little lower than in the true data,
particularly on large scales, and the non-linearity is slightly greater
on small scales. Nevertheless, given the known imperfections of the
current generation of semi-analytic calculations, the general agree-
ment is certainly encouraging. We hope that this work will stimu-
late the investigation of more detailed biasing models. Through the
linking of new simulations to observations, a more thorough under-
standing of the processes of galaxy formation and evolution should
be within our reach.
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A P P E N D I X A : N O N - L I N E A R A N D
S TO C H A S T I C B I A S S TAT I S T I C S F O R T H E
B I VA R I AT E L O G N O R M A L D I S T R I BU T I O N

The general biasing relation between the overdensities δ1 and δ2 of
two subgroups of galaxies, or two types of matter, is fully described

by equation (7)

b(δ1)δ1 ≡ 〈δ2|δ1〉 =
∫

f (δ2|δ1)δ2 dδ2. (A1)

The conditional probability distribution for the bivariate lognormal
model is given by equation (33)

f (g2|g1) = ω1

(2π|V |)1/2
exp

[
− (g̃2 − rLN g̃1)2

2
(

1 − r 2
LN

)
]
, (A2)

where gi = ln(1 + δ i ) −〈ln(1 + δ i )〉, 〈ln(1 + δ i )〉=−ω2
i /2 and g̃i =

gi/ωi . g̃2|g̃1 follows a univariate Gaussian distribution with mean
rLN g̃1 and variance 1 − r2

LN. The covariance matrix V and correlation
coefficient rLN are both defined in log space, and are given explicitly
in equations (31) and (32). The variance of the distribution in linear
space σ 2

i is related to the variance of the Gaussian field by

σ 2
i ≡ 〈

δ2
i

〉 = exp
(
ω2

i

) − 1. (A3)

On substituting equation (A2) into (A1) and integrating we find

b(δ1)δ1 = exp

[
ω2 g̃1 − (ω2rLN)2

2

]
− 1. (A4)

From this basic parameter we can calculate the mean biasing and
its non-linearity (equations 8 and 9)

b̂ ≡
〈

b(δ1)δ2
1

〉
σ 2

1

= exp(rLNω2ω1) − 1

exp
(
ω2

1

) − 1
, (A5)

b̃2 ≡
〈

b2(δ1)δ2
1

〉
σ 2

1

= exp
(
r 2

LNω2
2

) − 1

exp
(
ω2

1

) − 1
. (A6)

We also know the ratio of variances, equation (15)

b2
var ≡ σ 2

2

σ 2
1

= exp
(
ω2

2

) − 1

exp
(
ω2

1

) − 1
. (A7)

Although it is possible to derive the scatter for this model from
equation (12), it can be shown that (DL99)

b2
var = b̃2 + σ 2

b . (A8)

Using this fact we obtain

σ 2
b = exp

(
ω2

2

) − exp
(
r 2

LNω2
2

)
exp

(
ω2

1

) − 1
. (A9)

Whilst the bivariate lognormal model contains constant scatter
dependent only on rLN in the log frame, transformation to the linear
frame causes the scatter to become dependent on the widths of the
univariate distributions and vary with δ1.
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