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ABSTRACT

We present an analysis of the relative bias between early- and late-type galaxies in the Two-
degree Field Galaxy Redshift Survey (2dFGRS) — as defined by the n parameter of Madg-
wick et al., which quantifies the spectral type of galaxies in the survey. We calculate counts
in cells for flux-limited samples of early- and late-type galaxies, using approximately cubi-
cal cells with sides ranging from 7 to 42 h~! Mpc. We measure the variance of the counts
in cells using the method of Efstathiou et al., which we find requires a correction for a finite
volume effect equivalent to the integral constraint bias of the autocorrelation function. Using a
maximum-likelihood technique we fit lognormal models to the one-point density distribution,
and develop methods of dealing with biases in the recovered variances resulting from this
technique. We then examine the joint density distribution function, f(§g, 1), and directly fit
deterministic bias models to the joint counts in cells. We measure a linear relative bias of ~1.3,
which does not vary significantly with £. A deterministic linear bias model is, however, a poor
approximation to the data, especially on small scales (¢ < 28 h~! Mpc) where deterministic
linear bias is excluded at high significance. A power-law bias model with index b; = 0.75 is
a significantly better fit to the data on all scales, although linear bias becomes consistent with
the data for £ > 40 h~!' Mpc.
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1 INTRODUCTION

Measurements of large-scale structure from galaxy redshift surveys
obviously measure the distribution of luminous matter only; the to-
tal mass distribution will be dominated by dark matter. The question
of how the galaxies trace the total matter density field is therefore
extremely pertinent, both to the estimation of cosmological param-
eters, and also as a probe of the physics of galaxy formation. A
common assumption is ‘linear biasing’, which can be expressed as
8, =Dbdy,, where 8, 8, are the fractional overdensities relative to the
mean in galaxies and mass, respectively. This assumption becomes
unphysical when b > 1 since, by definition, §, > —1, but we can still
define a bias parameter, b(r), by e.g. £, (r) = b(r)*€ mm(r). Many
of the constraints on cosmological parameters derived from large-
scale structure measurements rely on an understanding of galaxy
bias. Both the 2dFGRS power spectrum analysis (Percival et al.
2001) and the constraints obtained for the neutrino mass (Elgargy
& Lahav 2003) assume scale-independent bias. Joint constraints
obtained by combining the 2dFGRS results with measurements of
the CMB power spectrum (Efstathiou et al. 2002; Percival et al.
2002; Verde et al. 2003) also require a model for galaxy bias. Dekel
& Lahav (1999) show that non-linearity and stochasticity in the
bias relation can explain discrepancies between different methods
of measuring parameters which assume a linear bias factor, such as
measurements of 8 = Q%6/b (Peacock et al. 2001; Hawkins et al.
2003).

In fact both theoretical approaches (Mo & White 1996) and sim-
ulations predict that bias may be non-linear and scale dependent,
at least on some (small) scales. Kauffmann, Nusser & Steinmetz
(1997) find only weak scale dependence on large scales and a bias
relation consistent with linear bias. Benson et al. (2000) find that
semi-analytic galaxies in a ACDM model could reproduce the APM
survey correlation function given a scale-dependent bias taking the
form of an antibias of galaxies relative to matter on small scales.
Somerville et al. (2001) also use semi-analytic modelling to demon-
strate that the physics of galaxy formation introduces a small scatter
in the galaxy—mass relation; they find the mean bias to have only a
weak dependence on scale for r < 12 h~! Mpc (where the Hubble
constant is Hy = 100 hzkms™1).

In principle the true mass distribution can be directly measured
from galaxy peculiar velocities using, e.g. POTENT reconstruction
(Dekel, Bertschinger & Faber 1990). In practice accuracy is hard to
achieve by such methods; the technique requires heavy smoothing
since the error bars per galaxy are large and the volumes surveyed up
to the present are relatively local. An alternative probe is to compare
the clustering of different types of galaxy : if these cluster differently,
at least one type cannot exactly follow the mass distribution.

It has been known for some considerable time that galaxies of
different morphological type have different clustering properties.
Early-type galaxies, such as ellipticals or SOs, are highly clustered,
accounting for almost 90 per cent of galaxies in the cores of rich
clusters. This fraction drops off steeply with distance from the clus-
ter cores and in the field 70 per cent of galaxies are late-type galaxies:
spirals and irregulars (Dressler 1980; Postman & Geller 1984). The
level of fluctuations in each of the early- and late-type density fields
can also be compared using the correlation functions or power spec-
tra for the two subpopulations. This kind of study is optimized for
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small separations (X10/2~! Mpc) and has generally revealed that
the clustering amplitude of ellipticals is greater than that of spi-
rals by a factor of 1.3-1.5 (e.g. Loveday et al. 1995; Norberg et al.
2002a; Zehavi et al. 2002; Madgwick et al. 2003b). If both density
fields were linearly proportional to the matter density field this fac-
tor would be equivalent to the ratio between linear bias parameters
(be(r)/bL(r))*. There is also evidence that the relative bias between
subpopulations of galaxies is more complex than the global galaxy
bias. Measurements of the 2dFGRS bispectrum (Verde et al. 2002)
found no evidence for non-linearity in the bias for 2dFGRS galaxies.
More recently, however, Kayo et al. (2004) find evidence for relative
bias being complex on weakly non-linear to non-linear scales from a
measurement of the redshift-space three-point correlation function,
as a function of galaxy colour and morphology, in the Sloan Digital
Sky Survey. Wild et al. (2004) have carried out a counts-in-cells
analysis using volume-limited samples from the 2dFGRS, and find
evidence for non-linearity and stochastic effects.

A detailed framework for dealing with possible non-linearities
and stochasticity in the bias relation is given by Dekel & Lahav
(1999), based on the joint probability distribution of the galaxy and
mass densities f(8,, ). In an analogous manner we will consider
the joint probability distribution of the early- and late-type galaxy
density fields for magnitude-limited samples in the 2dFGRS. This
approach in large part follows the methods described in Blanton
(2000) for the Las Campanas Redshift Survey (LCRS), although
the geometry of the 2dFGRS is considerably more amenable to this
kind of study than that of the LCRS and allows us, for example, to
examine a large range of scales.

This paper aims to explore quantitatively the nature of the relative
bias on several levels. First we measure the value of the linear rel-
ative bias factor between galaxies of different spectral types over a
large range of scales. We then discriminate between a range of pos-
sible models for the relative bias to determine if any of the aspects of
complex bias (e.g. scale dependence, non-linearity or stochasticity)
are present in the data. Finally, we attempt to quantify the nature
of these aspects of biasing. Our approach complements that of the
related study of Wild et al. (2004) who analyse volume-limited sam-
ples of the 2dFGRS segregated by both spectral type and rest-frame
colour. The approach adopted by Wild et al. (2004) is more focused
on measuring the stochasticity of the relative bias, which is poorly
constrained by the results of this paper. We place greater emphasis
on alternative measurements of the linear relative bias factor, and on
quantifying the degree of non-linearity present in the bias relation.

The paper is organized into sections as follows. In Section 2 we
summarize details of the 2dFGRS, the PCA-n parameter and the
division into cells. We present a measurement of the variances of
the counts in cells using the method of Efstathiou et al. (1990),
which we have corrected for integral constraint bias, in Section 3.
In Section 4 we present an analysis of the one-point distribution of
the counts in cells based on fits to a lognormal distribution function.
In Section 5 we discuss the relative bias. We present the results of
applying the ‘modified x 2’ statistic of Tegmark (1999) to the joint
counts in cells and then move on to describe the application of the
maximum-likelihood technique of Blanton (2000) to constrain the
relative bias between spectral types. We discuss in detail some of
the main strands of the paper in Section 6 and present a summary
of our conclusions in Section 7.
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2 THE 2DF GALAXY REDSHIFT SURVEY

The 2dFGRS observations were carried out between 1997 May and
2002 April using the 2dF instrument: a multi-object spectrograph on
the Anglo-Australian Telescope. The main survey region consists
of two broad strips, one in the South Galactic Pole region (SGP)
covering approximately —3725 < § < — 2225, 21"40™ < a < 3"40™
and the other in the direction of the North Galactic Pole (NGP),
spanning —7°5 < § < 225, 9"50™ < a < 14"50™. In addition there
are a number of circular two-degree fields scattered randomly over
the full extent of the low-extinction regions of the southern APM
galaxy survey.

The parent catalogue for the survey was selected in the photomet-
ric by band from a revised and extended version of the APM galaxy
survey (Maddox et al. 1990a,b,c, 1996). The magnitude limit at the
start of the survey was set at by = 19.45 but both the photometry
of the input catalogue and the dust extinction map have since been
revised and so there are small variations in magnitude limit as a
function of position over the sky. The effective median magnitude
limit, over the area of the survey, is by & 19.3 (Colless et al. 2001,
2003).

The completeness of the survey data varies according to the po-
sition on the sky because of unobserved fields (mostly around the
survey edges), untargeted objects in observed fields (due to colli-
sion constraints or broken fibres) and observed objects with poor
spectra; also there are drill-holes around bright stars. The varia-
tion in completeness with angular position, 6, is fully described by
the completeness mask (Colless et al. 2001; Norberg et al. 2002b;
Colless et al. 2003). Note that since we use exclusively those galaxies
for which a principal component spectral type has been derived, we
require a slightly modified completeness mask from that describing
the completeness of the full survey, one which reflects the complete-
ness of galaxies with measured n-type (Norberg et al. 2002a).

We use the completed 2dFGRS data set which was released pub-
licly at the end of June 2003 (Colless et al. 2003). This includes
221414 unique, reliable galaxy redshifts (quality flag > 3, Colless
et al. 2001, 2003). The random fields, which contain nearly 25 000
reliable redshifts, are not included in this analysis. Throughout the
paper we treat the NGP and SGP regions as independent data sets,
which means we have two estimates for each of the statistics we
derive. This approach functions both as a ‘reality check’ for our
error estimates and also gives an idea of the variation due to cosmic
variance.

2.1 PCA classification of galaxy spectra

The spectral properties of 2dFGRS galaxies have been analysed and
the galaxies split into spectral type classes using a principal compo-
nent analysis (PCA) described by Madgwick et al. (2002). This tech-
nique splits the galaxies on the basis of the characteristics of their
spectra which show the most variation across the sample, without
using any prior assumptions or template spectra. Madgwick et al.
(2002) define a scalar parameter, 17, which is a linear combination of
the first two principal components chosen to minimize instrumental
effects which make the determination of the continuum uncertain. In
effect, n quantifies the relative strengths of emission and absorption
lines, and can be shown to be tightly correlated to the equivalent
width of He in particular, so a simple physical interpretation of 7 is
as a measure of the relative star formation rate in a galaxy (i.e. the
ratio of present to past star formation; Madgwick et al. 2003a).
The PCA classification makes use of the spectral information in
the rest-frame wavelength range 3700-6650 A, which includes all

the major optical diagnostics between O 11 and Ha. The spectral
coverage imposes a limit on the maximum redshift at which this
analysis can be used of z = 0.2. For galaxies with z > 0.15, however,
sky absorption bands contaminate the He line, which affects the
stability of the classification. For this reason we restrict our analysis
to galaxies with z < 0.15 following Madgwick et al. (2002).

The distribution of n for the 2dFGRS spectra is clearly bimodal
(see fig. 4 of Madgwick et al. 2002), with a local minimum at n =
—1.4. Madgwick et al. (2002) divide galaxies into four spectral type
bins based on the shape of this distribution; the local minimum at
n = —1.4 is used to separate early and late types while the late-type
‘shoulder’ is divided in two and also separated from the tail, which
will be dominated by particularly active galaxies such as starbursts
and active galactic nuclei (AGN). Because of the effects of possible
evolution in the last two spectral type bins, discussed further in the
next section, we use only the spectral classes 1 and 2 of Madgwick
et al. (2002) in this paper, which we refer to as early and late type,
respectively, and exclude the bluer classes 3 and 4.

A comprehensive review of the relationship between 1 and the tra-
ditional morphological type is presented in Madgwick et al. (2003a),
along with an analysis of the effectiveness of the PCA method in
recovering the morphological type. The median value of 1 for each
morphological type does correlate rather well with the classifica-
tion bins described above, although there is considerable scatter in
the n-classification of spirals. More recently it has been possible to
determine accurate rest-frame colours for the 2dFGRS galaxies. A
similar bimodality exists in the colour distribution as that present
in the distribution of 7 although the relationship is not exactly one-
to-one between colour and n-type (Wild et al. 2004). The important
aspect of the PCA classification used here is that it represents a co-
herent method for dividing a galaxy sample into classes based on
a diagnostic with a relatively clear physical interpretation, i.e. rel-
ative star formation rate. Note that this specific interpretation will
not necessarily be the case for all galaxy samples classified using
a PCA method; comparing classifications based on a PCA analysis
between samples is in general non-trivial. In our case, however, the
fact that the PCA classification of the 2dFGRS is dominated by Ho
means that a classification of galaxies based on 7 is virtually the
same as a classification based on the equivalent width of Her.

2.2 Counts in cells

The analysis presented in this paper is complementary to approaches
to the study of the relative bias based on correlation functions, in that
we compare the two density fields on a point-by-point basis, rather
than measuring overall clustering amplitudes. To estimate the local
galaxy density contrast for each type we use the method of counts
in cells. Analysis of the 2dFGRS counts in cells has already been
used by Croton et al. (2004a,b) and Baugh et al. (2004) to constrain
the higher-order correlation functions and the void probability func-
tion. Another respect in which this analysis is complementary to the
correlation function approach is that it is optimized for much larger
scales.

The method by which we divide the survey region into cells is
identical to that first used by Efstathiou et al. (1990) for measur-
ing the variance of the counts in cells for a sparse-sampled redshift
survey of IRAS galaxies (Rowan-Robinson et al. 1990). First the
surveyed region of space is divided into redshift shells of thick-
ness ¢ centred on the observer. Each shell is then subdivided into
approximately cubical cells using lines of constant right ascension
and declination, chosen for each radial distance and declination to
ensure that the sides of the cell are of length ~¢, the shell separation.
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In this paper we analyse cell divisions over a range in ¢ from ¢ =
7 h~! Mpc to £ =42 h~! Mpc. We assume a concordance cosmology
of Q,, = 0.3, 2, = 0.7. Effective scales corresponding to a given
value of ¢ can be computed using the approximate relationship be-
tween the radius of a Gaussian sphere window, R, the radius of a
spherical top-hat window, R, and ¢, given in equation (1) (Peacock
1999):

Rr ¢
V50 V12

Note that for this analysis we have translated redshifts directly into
distances, ignoring the effects of peculiar velocity. Since peculiar
velocities for early-type galaxies are known to be larger than for late
types, it is important to consider whether redshift-space distortions
will affect the conclusions drawn in this paper. On non-linear scales,
the dominant effect of peculiar velocities is to produce the Fingers
of God, but on the larger scales relevant here, the linear S-effect will
be dominant (Kaiser 1987). From the measurements of the value of
B for galaxies of different spectral class obtained by Madgwick et al.
(2003b) we obtain

Por _ g9 2er
P, s,L P, r,L

where P g, P are the redshift-space power spectra for early and
late types, respectively, and the subscript ‘t” denotes their real-space
counterparts. From this it is clear that the effect of peculiar velocities
is not significant within our current errors, although any effect will
be in the sense of reducing the difference in the measured clustering
between spectral types.

Any analysis of the galaxy counts in cells for a flux-limited survey
must take into account the selection function, which quantifies the
probability that a galaxy with a given redshift, z, is included in the
survey. We define M ,,(z, ) and M (2, 0) to be the minimum
and maximum absolute magnitudes visible at redshift z given the
magnitude limit of the survey which, in the case of the 2dFGRS,
varies with angular position € as described in Section 2, and we take
the luminosity function ®(M) to be normalized in that range. Then
the selection function can be written

Rg ey

; €3

Mmax(2,0)
¢(z,0) = / dM &(M)c,(0). 3)
Mmin(2.60)

The c,(0) term describes the variation in completeness of the survey
over the sampled area, for which we use the survey mask for n-typed
galaxies described in Section 2. The completeness also depends
slightly on apparent magnitude and, for the full survey, one can
use the relation given in Colless et al. (2001) to parametrize this
variation:

(0, by) = y{1 — explby — w(O)1}, )
where y is set at 0.99 and 1 (0) can be set by the requirement that
(c:(8, by)) = c.(0), (5)

where the average is made over the expected distribution of apparent
magnitudes, bj.

Unfortunately, the «(6) mask is undefined for n-typed galaxies.
To generate such a mask one would need to assume a form for the
number counts as a function of 7, as well as making an assumption
for the variation of completeness with limiting redshift, z,,x, since
the n parameter is only defined for z < 0.15. Given the large number
of assumptions which would be necessary we have not included a
correction for the effect of apparent magnitude on completeness in
this study; the effect is in any case a small one, particularly in a
flux-limited catalogue.
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Once we have a knowledge of the selection function we can define
the expected number of galaxies in each cell i by

Nexp,i = / dVr ¢(Z7 0) (6)
Vi
where the integral is over the volume of the cell i.

We use expected counts in cells (N g exp,; and N ey, ; for early and
late types, respectively), which we obtain by integrating the n-type
dependent luminosity functions of Madgwick et al. (2002) using the
average magnitude limit over the surface of each cell (Colless et al.
2001, 2003) and corrected for c¢,(0) as described above. We reject
from the analysis cells for which the average completeness over the
cellis less than 70 per cent. We also renormalize the expected counts
to ensure that (N /N ) = 1 in order to correct for possible errors
in the normalization of the luminosity functions. We find that this
choice of renormalization gave the most stable results although the
exclusion of empty cells from the renormalization step was neces-
sary to ensure stability (see Section 4.2). In practice the details of
this renormalization step do not significantly affect the best-fitting
parameters for the variance or relative bias, but they do change the
Kolmogorov—Smirnov test probabilities for our models.

This approach to dealing with the selection function for subsets
of the data, such as the division into early and late-type galaxies,
is vulnerable to systematic errors in the selection function. An ex-
ample of such an effect would be a surface-brightness term in the
selection function for n-typed galaxies, which one would expect
would affect early- and late-type galaxies differently. Any system-
atic error in calculating the expected number of counts in cells for
the early- or late-type galaxies will bias results for the non-linearity
and stochasticity of the bias function. Such an effect was noted in
Blanton (2000), who found that his results were sensitive to ex-
cluding the low-redshift part of his sample. Madgwick et al. (2002)
detect a large overabundance of spectral types 3 and 4 beyond z =
0.11, relative to the predicted n(z) based on the luminosity functions
for these spectral types. Although such an observation could be due
to aperture effects, a more plausible explanation is the presence of
evolution for these spectral type bins. In principle, such evolution
could be modelled in our analysis, and we could derive accurate
Ny, for all late-type galaxies. If there is evolution in these spectral
types, however, we may expect that the relative bias could also be
evolving over the redshifts used in this analysis. For this reason we
have used only n-types 1 and 2 in the analysis.

Fig. 1 shows the division into cells for £ = 14 h~! Mpc. The galax-
ies in each cell of the respective spectral type are shown overlaid
on a grey-scale indicating the estimated galaxy density contrast in
that cell. The intermediate density contrasts are much less prevalent
in the early-type density field, implying that the contrast between
clusters and voids is increased, as one would expect. Table 1 shows
the number of cells in each cell division together with the median
and 16 and 84 per cent percentiles of the distribution of expected
counts.

Wild et al. (2004) have also analysed colour-selected volume-
limited samples from the 2dFGRS. Unfortunately, luminosity func-
tions for different colour selections from the 2dFGRS have not yet
been measured, and so we cannot define the selection functions
required to carry out our analyses on colour-selected magnitude-
limited samples.

3 THE VARIANCE OF THE COUNTS IN CELLS

One of the most fundamental statistics accessible from the counts
in cells is the variance of the counts. This is directly related to the
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Figure 1. An example of the division into cells for the NGP (top) and SGP (bottom) regions, with cells of side £ = 14 h~! Mpc; the cells spanning the central
declination of each slice are plotted along with the galaxies of each type (early types on the left, late types on the right) in the cell. The grey-scale indicates the
estimated galaxy density contrast as defined in the text.

Table 1. Total number of cells and expected counts (presented as the 16-50-84 per cent percentiles of the distribution).

NGP SGP
14 (h_l MPC) N elts Nexp,E Nexp,L Neelis Nexp,E Nexp,L
7.0 11056 2.0-3.2-5.7 1.2-2.2-4.7 14593 2.0-3.0-5.0 1.3-2.2-4.5
8.75 5689 2.8-4.5-8.3 1.7-3.0-6.7 7543 2.7-4.1-6.9 1.8-3.0-6.2
10.5 3170 4.0-6.5-11.7 2.5-4.4-95 4114 3.8-5.8-9.6 2.6-4.3-8.7
12.25 2026 5.4-8.9-16.4 3.4-6.0-13.3 2567 5.3-7.8-13.1 3.6-5.9-12.0
14.0 1198 8.4-13.1-23.3 5.3-8.8-18.9 1484 7.7-11.4-18.7 5.5-8.8-17.4
17.5 620 13.7-22.8-40.5 8.7-15.7-32.6 729 12.7-18.3-30.0 9.2-14.4-28.3
21.0 336 24.5-39.3-69.4 15.7-26.8-56.0 372 22.0-32.8-52.4 15.8-25.5-49.8
24.5 187 41.3-64.6-117 25.8-43.3-95.6 205 36.0-49.2-80.3 26.6-38.6-75.9
28.0 113 63.1-95.9-175 39.1-63.1-136 117 51.8-77.0-114 38.1-61.0-110
31.5 80 98.1-162-252 61.8-109-197 125 86.3-122-179 62.6-99.5-171
35.0 57 140-226-321 85.2-152-250 101 120-160-260 85.9-125-255
38.5 45 183-278-390 112-184-301 77 143-175-305 104-138-296
42.0 34 248-351-476 156-237-349 53 168-227-388 125-176-369

galaxy autocorrelation function, being equal to the volume aver-
age of the correlation function once the contribution of discrete-
ness noise is removed. In later sections we will fit a parametric
model to the one-point distribution of the counts in cells as the first
stage in a maximum-likelihood approach to fitting for the relative

bias; we would expect that an accurate model for the one-point
distribution will reproduce the variance of the counts as measured
in this section. Furthermore, by comparing the variance between
spectral types, we can obtain an estimate of the linear relative bias
parameter.
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3.1 Predictions for the variance

The real-space and redshift-space correlation functions for the full
set of 2dFGRS galaxies have been accurately measured by Hawkins
et al. (2003). We have used these results to obtain predictions for
the variance of the counts in cells using a number of approaches
outlined below.

If we assume that the real-space correlation function is well de-
scribed by a power-law of the form

smy=(—1 . 3.1
ro

then we can use the following form for the power spectrum expressed
as the variance per In k:
2-—y)m

A(k) = %(krO)VFQ — y)sin — @)

For the case of Gaussian spheres of radius Rg, the variance in
spheres, o2, is equal to the value of A%(k) at

1 _2 1y
(52w

but this is also a good approximation to the variance in cubical cells
if we take Rg = £/+/12, as described in Section 2.2.

More accurate predictions can be obtained by directly integrating
the correlation function over a cubical volume of side ¢ to calculate
the variance in cells,

0% = % /V dv, dv; E(r). )
We have used this method to calculate predictions based on both
the real-space and redshift-space correlation functions of Hawkins
et al. (2003). The variance obtained from a volume average of the
best-fitting power-law form for the real-space correlation function
(Hawkins et al. 2003) is almost identical to that using the scaling
relation (equations 7 and 8) as one might expect. We have also
calculated redshift-space variance estimates using both a power-
law approximation for £(s) and a direct interpolation from the data
of Hawkins et al. (2003), since &£(s) is not well approximated by a
power law. The estimated variance from the interpolated &(s) data
(solid lines in Figs 2, 4 and 7) is likely to give the most accurate
prediction for the variance of the counts in cells for the combination
of spectral types 1 and 2.

3.2 Measuring the variance from the counts in cells

A maximum-likelihood technique for calculating the variance of
counts in cells is presented by Efstathiou et al. (1990). The key
advantage of this method is that by calculating the variance in in-
dividual redshift shells, it does not require a weighting scheme to
compensate for the radial selection function. In each redshift shell
in our cell division we can compute the statistic

__ e
S = M—IZ(N' NP - N, (10)

where the sum extends over the M cells in the shell, and N is the
mean cell count; NN; are the observed counts in cell i. Note that this
technique is based only on the measured counts in cells and does
not use the expected counts, Ny, calculated in Section 2.2. The
expectation value for S is

(S) =n*Vie? = N%?, (11)
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where n is the mean number density and V is the volume of the
cells. Note that we have implicitly assumed Poissonian noise in the
counts, which we have removed in equation (10) by subtracting
N. The variance of S for the case where the underlying density
fluctuations are Gaussian is given by

2n2V2(1 + 02 + 4n3V3o? + 2n*VioH

Var(S) = I . (12)

Clearly this variance will be underestimated since we have made
two key assumptions which are not strictly correct, namely that the
underlying fluctuations are Gaussian and that the cells are inde-
pendent. The effect of correlations between cells was addressed by
Broadhurst, Taylor & Peacock (1995). They show that for all but ad-
jacent cells the covariance in the cell counts will be negligible and,
within the accuracy to which o2 can be calculated, the error in treat-
ing even adjacent cells as independent is unimportant. A far more
serious concern is with the assumption of Gaussian fluctuations;
even on the relatively large scales of this analysis this assumption is
far from valid. By using the variance estimator of equation (10) on
Monte Carlo realizations of lognormal fields we find that the vari-
ance of S is many times larger than expected from equation (12).

This method must be modified to deal with completeness varia-
tions in the 2dFGRS, as quantified by the survey mask. Efstathiou
et al. (1990) gives the following modified estimator for S for the
case where cells are incomplete due to the survey mask:

S=A/B,

where

2
0 N,
A= <M Zj W)

n ’ U U2

1 3 2

B=|(— 2=+ =,

<v1> [Uz o U12‘| (13)

where for convenience we have used the quantities ny, vy, v,, v3,
defined as:

m=Y Now=Y Vium=3 Viu=Y V. (4

where V; is the usable volume of cell i. This correction is only valid if

only a small fraction of a cell is excluded by the mask, so for this test

we reject all cells where the fraction of the cell of low completeness

(<70 per cent) is less than 30 per cent. We also upweight the counts

in cells to compensate for incompleteness, based on the survey mask.
For each shell, j, we define a likelihood,

—(Sj — n§V202)2‘|

Li(o) = (15)

1
exp
\/27var(S;) 2Var(S;)
which is calculated using equation (13) as an estimator for n3 V>0,
We then minimize with respect to o the quantity

L:E—zzlnLj, (16)
J

where the sum is over all redshift shells. Note that this differs by a
factor 2 compared to £ defined by Wild et al. (2004).

As we discussed above, the variance on the estimator, Var(S),
is in fact badly underestimated by equation (12) for realistic non-
Gaussian density fluctuations. Although in practice the procedure
adopted by Efstathiou et al. (1990) of deriving errors in ¢ from the
likelihood function will not underestimate errors as dramatically as
this, since the variation between shells will contribute to the error
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Figure 2. o as a function of cell size, ¢, as measured by the maximum-likelihood technique of Efstathiou et al. (1990). Filled symbols are for the NGP region,
open symbols are SGP. The results shown are fits to the early-type galaxies (squares), late types (triangles), and to both types combined (circles). Predicted
values are overlaid, calculated using a power-law form for A2(k) (equation 7; dotted line); from the integral over the power-law fit to £(r) (dash-dot line), from
the integral over the power-law fit to the redshift-space correlation function, £(s) (dashed line), and from the integral over the interpolated data table for £(s)
(solid line). (The points for the SGP are offset by a small amount for clarity.) Points in grey are the measured values when empty cells are removed from the
analysis; for £ > 14 h~! Mpc this has no effect on the variance measurements. The error bars are derived from Monte Carlo realizations of lognormal models

as described in the text.

estimate for o, we have instead used Monte Carlo realizations of
lognormal fields at the appropriate variance to derive more realistic
error bars. Even though these errors are model dependent, the density
fluctuations are much more closely approximated by a lognormal
model than the Gaussian assumption of equation (12).

3.2.1 Cell variances and estimation bias

The variances of the counts in cells calculated using the maximum-
likelihood approach are shown in Fig. 2. The figure shows that the
measured variances for the combined sample (n-types 1 and 2) lie
below the variance predicted from the redshift-space correlation
function. The fact that the variances appear to be consistent with
the real-space predictions is fortuitous. The variances are underesti-
mated due to a finite volume effect exactly equivalent to the integral
constraint, which is discussed in detail in Hui & Gaztafiaga (1999).
It becomes relevant here because we are using redshift shells which
have a rather small volume because of the geometry of the 2dFGRS
slabs. Hence the individual shell contributions, S; in equation (15),
can be significantly biased.

Hui & Gaztafiaga give a useful analytical approximation for the
magnitude of the integral constraint bias in the variance. We express
the expected value of our variance estimator as

(6%) = o (1 + Ag‘f) : (17)

where A2 /o is the fractional bias in o', The fractional bias can
be approximated by the expression:

Ay ol )
02 :_;+(3_2612)UV’ (18)

where o, is the two-point correlation function averaged over the
whole volume in question, which in this case is the volume of a shell,
and ¢, is a coefficient derived from the hierarchical relation. We
have used the perturbative value for ¢, from Bernardeau (1994):

cip =68/21 4+ y/3. 19)

Using this approximation we can correct the S; and Var(S)) in
equation (15) to obtain a bias-corrected estimate for o. In Fig. 3 we
show an example of the estimated variances in redshift shells for
both the original Efstathiou estimator (equation 13; grey points and
horizontal lines) and the bias-corrected version (black points and
horizontal lines), for a single scale £ = 14 h~! Mpc. The correction
for integral constraint bias shifts the maximum-likelihood variance
estimator such that our results for the variance of the counts in cells
for the combined sample are now consistent with the predicted val-
ues from the redshift-space correlation function as shown in Fig. 4.
The bias correction also increases the errors on the individual shell
variance measurements.

The effect of large-scale structure can clearly be seen in Fig. 3; in
particular the noticeable spike around r = 250 4~! Mpc corresponds
to the prominent group of large clusters in the NGP region at around
z =0.09. This is the NGP ‘hotspot’ observed by Baugh et al. (2004).
Removing the shells around this value of r does not alter our results
appreciably relative to the magnitude of the estimated errors.

4 LOGNORMAL MODELS FOR THE
ONE-POINT DISTRIBUTION FUNCTION

Given a model for the one-point density distribution function, we
can model the one-point distribution of galaxy counts as being
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Figure 3. An example of the estimated cell variance in redshift shells com-
pared to the maximum-likelihood value and its associated 1o error shown
in the horizontal black solid and dashed lines. This example is for the £ =
14 h=" Mpc cell division of the combined sample (n-types 1 and 2) in the
NGP region. The points in grey (offset for clarity) show the same plot before
the effects of the integral constraint bias have been corrected for and the grey
horizontal solid and dashed lines show the uncorrected maximum-likelihood
estimate with its associated 1o error.

equivalent to a convolution of the density field with Poisson fluctu-
ations of intensity A = N (1 + 8), i.e.

NN (1+8)N
P(N) = / ds Nepl 47 e Newl D) £(5),

N! 20)

We can then use equation (20) as the basis for a maximum-
likelihood method to determine the parameters of the best-fitting
model for f(8). A number of models have been proposed for f(5)
including the lognormal distribution (Coles & Jones 1991), neg-
ative binomial model (Fry 1986; Carruthers 1991; Bouchet et al.
1993; Gaztafiaga & Yokoyama 1993), Edgeworth expansion around

[aV)
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the Gaussian distribution (Juszkiewicz et al. 1995) and Edgeworth
expansion around the lognormal model — the skewed lognormal ap-
proximation of Colombi (1994). Ueda & Yokoyama (1996) consider
fits of all of the above models to the counts in cells of a low-density
CDM N-body simulation. They find that the most satisfactory fit
is given by the skewed lognormal model but unfortunately it is not
positive definite, making it unsuitable for the maximum-likelihood
fitting procedure outlined below. The lognormal model is the most
mathematically convenient since the version given below is already
normalized in the interval —1 < § < oo and ensures that (§) = 0.

4.1 Lognormal model fitting
The lognormal model, which we use to fit the one-point distribution
function, is given in equation (21), where x = In (1 + 8) + o2 /2,

f(8)ds = 21)

dé x2

——exp| —— |-
OLNV 27'[(1 + (S) P ZULZN

It should be noted that we have here followed the notation of
Coles & Jones (1991) in that o2y is the variance of the Gaussian
model from which the lognormal is derived by transformation —note
that Wild et al. (2004) use w? for the same parameter. The variance
for the lognormal model is given by

(8%) = exp (JLZN) — 1.
To ensure that the results of this section can be easily compared

to those measuring the variance in the previous section we have
used the above relation to transform our variances from oy to

o(f) = +/(8%).

Using this model, we define a likelihood for each cell i, as

(22)

L; = P(N;|own),

in which the probability of observing N; galaxies in cell i is de-
termined by equation (20). We then find oy for the best-fitting
lognormal model by minimizing with respect to o the quantity

o(f) from maximum likelihood estimate

NGP SGP
o early
a IN late
o o combined

5 10 15 20

25 30

40 45

Figure 4. The same as Fig.
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2 but using the approximation of Hui & Gaztafaga to correct for the integral constraint bias.
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= —ZZln L, (23)

where the sumis over all cells, as defined previously in equation (16).
Again, this differs by a factor 2 compared to £ defined by Wild et al.
(2004)

4.2 Lognormal model variances and empty cells

We have fitted lognormal models for the one-point density distri-
bution to both the early- and late-type galaxy populations, and to
the whole sample. Examples of the actual one-point distributions
for a cell size of £ = 17.5 h~! Mpc for early and late types, as well
as for the full data set (n-types 1 and 2), are shown in Fig. 5, and
one-point distributions as a function of cell size ¢ for the SGP region
are shown in Fig. 6, where we have used N/N ., as an estimator
for the overdensity in the same manner as equation (27), with the
N¢yp calculated using equation (6). When we fit models to all cells
in the data, including empty cells, we recover variances which are
many sigma above both the variance predicted from £(s) and the
measurements of the variance in cells of Section 3. For example,
the best-fitting lognormal model for £ = 10.5 2~' Mpc gives a vari-
ance in early types of o g ~ 1.9, whereas our previous measurements
give og ~ 1.1.

Some insight into why empty cells have such a dramatic effect
can be gained by examining the number of empty cells in the data
on scales where they become significant (¢ < 152~ Mpc). Table 2
shows the number of empty cells in the full survey data for each
type and for n-types 1 and 2 combined, along with the 10 and 90 per
cent percentiles of the distribution of empty cells in a large number
of Monte Carlo realizations of lognormal models with variances
matching our previous measurements of the variance in cells. A
Poisson-sampled lognormal model with a realistic variance cannot
explain the number of empty cells in the data; the large excess of
empty cells will increase the variance of the best-fitting lognormal
model. Table 2 also shows the number of empty cells which are found
when we analyse the Hubble volume mock catalogues appropriately
sampled to match the survey data (Cole et al. 1998; Norberg et al.
2002b) using the same method. The number of empty cells in the
real and mock data on small scales exceeds the number predicted
by the lognormal model, which suggests that a Poisson-convolved
lognormal model is not a good fit to the actual density distribution
function. In the real data this discrepancy is more pronounced and
extends to smaller scales.

A possible explanation for this effect is that the luminosity func-
tion of the 2dFGRS galaxies is dependent on the local density.
Croton et al. (2004c) investigate this possibility and find that L,
increases as a function of the overdensity in 8 h~' Mpc spheres.
This effect would mean that the appropriate intensity for the Pois-
son process in each cell, rather than being given by A = N, (1 + ),
would change to A = N, (1 + 8)¥(8), where v/(8) is a correction
factor which also depends on the redshift of the cell. Hence if ¥ is
significantly less than unity for very low overdensities, the observed
number of empty cells will be significantly greater than expected.

A simple solution to this problem is to fit lognormal models to
the counts in cells excluding empty cells. Clearly this will cause
variance estimates to be biased on scales where empty cells are
significant (¢ < 15h~!' Mpc). We have estimated the magnitude of
this bias both by measuring the effect of excluding empty cells from
Monte Carlo realizations of lognormal models, and by considering
the bias introduced into the variance measurements of Section 3 on
small scales when we excluded empty cells (grey points shown in
Fig. 4); both methods give similar results.

0.1

t=17.5 h™'Mpc — EARLY

Cell fraction

NE/Nexp,E
T -

¢=17.5 h™'Mpc — LATE

0.1

Cell fraction

0.1

Cell fraction

N/N

exp

Figure 5. An example of the one-point distribution function for counts in
cells of size £ = 17.5h~! Mpc in the NGP region for early-type galaxies
(top), late types (middle), and n-types 1 and 2 (bottom). The average of a
large number of realizations of the best-fitting lognormal models, convolved
with the same Nexp,i as the data, are also shown, together with their 1o
spread. The higher variance of the early-type distribution is very clear.

The values of ¢ from the lognormal fits to the early- and late-
type subsets, as well as the full catalogue, are shown in Fig. 7.
The black points show the measurements excluding empty cells and
corrected for the bias; points in grey for small £ show the original
measurements illustrating the bias introduced by excluding empty
cells in a similar manner to Fig. 2. Since the likelihood function is
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Figure 6. The one-point distribution function for counts in cells of the combined sample for the SGP region over a range of cell sizes, from left-right and
top-bottom, ¢ = 14, 17.5, 21, 24.5, 28, 31.5, 35, 38.5, 42 ! Mpc. The average of a large number of realizations of the best-fitting lognormal models,
convolved with the same N exp,; as the data, are also shown, together with their 1o spread. (Note that the y-axis changes between plots in this figure.)

Nexp,i

well approximated by a x? distribution with one degree of freedom as well as for the combined sample. None of the values for P for
we have derived 1o errors by considering the values for o |y at which £>17.5 =" Mpc are sufficiently low to exclude the model at a high
L = Luin + 1. We have also obtained Monte Carlo estimates of the level of confidence. In general the early-type distribution is well-
errors by using the procedure outlined above to fit a large number of fitted by lognormal models to smaller scales than the distribution
models generated by randomly drawing the galaxy density contrast, of late types or the combined galaxy distribution. On scales smaller
8, from a lognormal distribution with the best-fitting value of o than ¢ = 10.5 1~' Mpc a Poisson-convolved lognormal model is not
and then generating model counts from a Poisson distribution with a satisfactory fit to any of the distributions. We expect, based on
intensity A = (1 + )N ¢y, using the same expected counts in cells the findings of Ueda & Yokoyama (1996), that the lognormal model
as were calculated for the data. The magnitudes of errors using both will not adequately describe the data in the non-linear regime. Our
methods are identical. results are consistent with this expectation since the variance is

As another measure of the goodness of fit for these models significantly higher than unity on the scales at which the lognormal
we show in Table 3 probabilities obtained by the application of model becomes unsatisfactory.
a Kolmogorov—Smirnov (KS) test to the distribution of N/N ¢yp. Although the values of o for types 1 and 2 combined, shown in
The KS test is not ideal for a number of reasons; it is rather insen- Fig. 7, are broadly consistent with the cell variance derived from
sitive to variation in the tails of distributions, which is where we &(s) in Section 3.1, there is a systematic trend for the fitted values
would expect the lognormal model will have the most difficulty in of o'(¢) to be higher than predicted. The magnitude of this effect is
matching the data. Strictly speaking the estimate of Pxs which we between 10 and 15 per cent, as shown in the ratio plot of Fig. 8;
use here is no longer valid once the data have been used to fix any this corresponds to around a 20 effect. Maximum-likelihood fits to
free parameters of the model, although any effects should be small lognormal models giving variances consistent with predictions are
since the number of data points we use is very much larger than the obtained with the introduction of an additional weighting factor to
number of free parameters. the likelihood defined in equation (23):

The KS test probabilities indicate that the lognormal model is an , N;
acceptable fit to the data on large scales for both early and late types, L=-2 Z InL;. 24
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Table 2. Number of empty cells in full survey data compared to the 10 and 90 per cent percentiles of the empty cells in
lognormal models matching the measured variances in cells. The rightmost column shows the number of empty cells when the

Hubble volume mock catalogues are analysed in the same way.

early-type galaxies late-type galaxies types 1 & 2 HV mocks
¢ (h! Mpc) N empty Models Nempty Models Nempty Models (N empty)
7.0 14103 7482-7670 13495 8050-8237 10527 42434406 8029
8.75 5238 2633-2743 4757 2803-2909 3405 1276-1355 2063
10.5 1863 884-961 1590 962-1040 1005 354-405 478
12.2 709 321-370 601 339-387 333 99-128 109
14.0 211 89-114 163 88-113 83 19-31 17
?\ NGP SGP x unweighted £
{‘\@ . o early o k. weighted £ g
\ L3 . a  late B
o B . o combined g
29f B
E ;; - % 4
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Figure7. o from the best-fitting lognormal model as a function of cell size,
£. Filled symbols are for the NGP region, open symbols are SGP (offset as
previously). The results shown are fits to the early-type galaxies (squares),
late types (triangles), and to both types combined (circles). Predictions are
overlaid as in Fig. 2. The results are based on counts in cells with empty cells
removed from the analysis. The small-scale results (for £ < 14 h~! Mpc)
are corrected for the bias resulting from excluding empty cells which causes
the variance to be underestimated, as illustrated by the grey points (see text).

Table 3. Best-fitting lognormal model parameters and KS test probabilities
for the lognormal model fit. The parameters for low ¢ cell divisions are
derived from the data excluding empty cells and corrected for the resultant
bias as described in the text.

(™' Mpe)  oiNE Pxs OLN,L Pxs O LN,all Pxs
7.0 1.20 6e-14 1.05 7e-55 1.12 2e-99
8.75 1.12 0.001 0.94 3e-18 1.03 de-47
10.5 1.05 0.229 0.88 0.002 0.97 Se-15
12.2 0.99 0.268 0.81 0.134 0.90 0.001
14.0 0.95 0.105 0.77 0.183 0.87 0.015
17.5 0.84 0.292 0.67 0.442 0.77 0.212
21.0 0.78 0.670 0.61 0.193 0.70 0.332
24.5 0.68 0.291 0.53 0.710 0.61 0.414
28.0 0.59 0.992 0.45 0.695 0.53 0.987
31.5 0.57 0.829 0.44 0.988 0.51 0.962
35.0 0.53 0.553 0.41 0.625 0.48 0.817
38.5 0.48 0.195 0.39 0.308 0.44 0.965
42.0 0.42 0.850 0.32 0.925 0.37 0.825

The results of applying the above weighting factor are shown
by the filled squares in Fig. 8. In effect this modified likelihood
gives more weight to the most dense regions, and suggests that
the lognormal model is more appropriate to describe the density

cell size, ¢(h™'Mpc)

Figure 8. Ratio plot of o (¢) from the best-fitting lognormal model com-
pared to the predicted value integrating £(s) over cells. The crosses show
the unweighted maximum-likelihood results for n-types 1 and 2, with NGP
and SGP regions combined. Filled squares (offset) show the results when an
additional weighting is applied to giving more weight to more overdense
cells.

distribution of high-density regions. This would be consistent with
our observation that in general the early type distribution is better
fitted by a lognormal model than the distribution of late types, since
early types are more prevalent in dense regions. We have tested the
weighting scheme on model data based on a lognormal model and
verified that it does not underestimate o in this case; the fact that a
discrepancy such as this exists indicates that the lognormal model
is not a completely satisfactory model for the one-point distribution
functions.

5 THE RELATIVE BIAS

We are now in a position to consider the characteristics of the joint
distribution of the counts in cells. We postulate a smoothed density
contrast field for galaxies 8, which can be related to the density field
of dark matter, §, using the general biasing framework of Dekel &
Lahav (1999):

8y = b(8)8 + €, (25)

which in principle is able to deal with both non-linearity and stochas-
ticity, parametrized by the function b(8) and €, respectively. We fur-
ther assume that a similar relationship holds independently for the
separate spectral types; in other words we consider early and late
types with their own separate smoothed density fields denoted by §g
and 41, respectively. Then we can specify the relative bias between
the density fields analogously to equation (25):

8L = b(8)dg + €L. (26)
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We have taken two approaches to quantifying the relative bias.
Our first method considers an estimate of the galaxy density contrast
for each spectral type in each cell, i, which we denote as

8ei = NEi/Ngexpi — 1, 27)

for the early-type galaxies, and analogously for late types.

Under the assumption that the density fields of both spectral types
are related to the underlying dark matter field by a linear bias factor
and that the only scatter is due to the Poissonian scatter caused by
galaxy discreteness, we have for the early-type galaxies

gei = bed; + €, (28)

where € ; is the Poisson noise for the early types in cell i. gp.; can
be defined similarly. This is the basis for the null test described in
Section 5.2.

In the second approach we attempt to fit to the joint distribution
of the underlying smoothed density fields,

S8k, 8L) = f(6LI8k) f (Sk). (29)
We follow the example of Dekel & Lahav (1999) and adopt a

general description for relative bias:

b(8g)dg = (8L18E) = /dSL S (8L18E)dL. (30)

The function b(§g) is characterized by Dekel & Lahav (1999) by
defining the following moments:

. b(8g)82 - b*(8g)82
bE< E2 E>, b25< E2‘ E>’ (3])
Ok Og
where o = 4/ (82), as we have used previously throughout this
paper.
A random biasing field, €, is defined in our case as
€= 8L — (L|de), (32)
and the average biasing scatter, o'y,
2
, _ {€9)
=", 33
Ty O'é ( )

These moments separate the effects of non-linearity and stochas-
ticity of the bias relation. Linear bias is often described by the ratio
of variances of the density field. In fact this bias parameter, by,;, is
a mixture of non-linear and stochastic effects and can be expressed
in terms of the above moments as:

P —F 4o,

var where by, = o /0. (34)

The bivariate lognormal model considered by Wild et al. (2004)
explicitly includes a stochastic term in the relative bias, which also
effectively introduces a non-linear term.

5.1 Direct estimates of b,

We estimated the relative bias from the cell variances calculated
using the Efstathiou estimator, after correcting the estimator for the
integral constraint bias, shown in Fig. 4. We have used 1/b, to
facilitate comparison with other papers where the relative bias is
generally defined as a ratio b,y = bg/by. The results are plotted in
Fig. 9 which shows that the relative bias is consistent with a constant
1/byy = 1.25 £ 0.05 for both the NGP and SGP regions and for all
cell sizes. In calculating the error bars we have used the measured
error bars at each value of ¢ and made the assumption that points
adjacent in £ in Fig. 4 are perfectly correlated. For comparison we
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Figure 9. The relative bias estimated from the ratio of o /o1, from the
variance estimator of Efstathiou et al. (1990) for the NGP (filled triangles)
and SGP (open circles) regions. The relative bias predictions from the real-
space correlation functions per n-type of Madgwick et al. (2003) are shown
in grey.

have plotted the relative bias, by = +/E(r)/EL(r), from the real-
space correlation functions per n-type of Madgwick et al. (2003b),
where we have converted the separation, r, to £ by assuming r =
Rt and using equation (1). This is intended mainly for illustration
since, following the bias framework of Dekel & Lahav (1999), the
bias parameter formed from the ratio of correlation functions is not,
in general, equivalent to b,,.. Clearly, though, they are consistent
within the rather large errors from the correlation function estimate.

We have also calculated the relative bias from the variances of
the lognormal model fits to the early- and late-type one-point dis-
tributions as shown in Fig. 7,

exp(aﬁN,E) —1
exp(afN‘L) -1

The results are shown in Fig. 10, again compared to the results of
Madgwick et al. (2003b). The relative bias factor is again consistent
with a scale-invariant bias and we derive a value of 1/b,,, = 1.28 +
0.05 from the £ > 14 h~! Mpc data again assuming correlation of
adjacent bins in ¢ from Fig. 7.

bvar = (35)

5.2 The Tegmark ‘null-buster’ test

Tegmark (1999) describes a simple ‘null buster’ test, based on a
generalized x statistic, to test the assumption that the density fields
traced by galaxies of two different spectral types can be related by a
simple deterministic linear biasing prescription. This test has been
used by Seaborne et al. (1999) to compare the PSCz and Stromlo—
APM redshift surveys.

If we first assume that the estimated galaxy density contrasts for
each spectral type, gg and g, are related to an underlying dark
matter density field by the prescription of equation (28), then we
can construct the difference map:

Ag =gr— f&rL, (36)

for different values of the relative bias factor f = bg/by.

If the deterministic linear bias model is valid, then for the correct
value of f, the relative bias factor, Ag will consist merely of Poisson
noise, which will have a covariance matrix given by Tegmark &
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Figure 10. The relative bias estimated from the parameters of the best-fitting
lognormal models for the early- and late-type one-point distributions, for
the NGP (filled triangles) and SGP (open circles) regions. The relative bias
predictions from the real-space correlation functions per n-type of Madgwick
et al. (2003) are shown in grey.

Bromley (1999) as
N = (AgAg') =8, [1/Npxpi + F2(1/NLexp.)] - 37)

This equation for the covariance matrix is valid for density fluctu-
ations < 1; following Seaborne et al. (1999) we therefore exclude
cells with gg > lor g > 1.

Since we are testing the null hypothesis that (AgAg’) = N, we
can define x? = Ag' N~!Ag. If the null hypothesis is correct, the
quantity v = (x> — N.)/+/2N., where N, is the number of cells,
has an expectation of zero and standard deviation of one. We can
therefore interpret v as a measure of the significance with which the
null hypothesis is ruled out.

In the case where there is extra signal, S, in the covariance matrix
of the difference map, so that (AgAg’) = N + S, the generalized
x? statistic (Tegmark 1999) is a more powerful way to rule out the
null hypothesis:

Ag'N7ISN~'Ag — Tr (N71S)
[2Tr (N"ISN-1§)]12 '

(38)

V=

If there are any deviations from deterministic linear bias we would
expect these to be correlated with large-scale structure. We therefore
choose the matrix S to be the covariance between cell overdensities
calculated using the redshift-space correlation function calculated
by Hawkins et al. (2003), i.e. the volume average of & (s;;) over cells
i and j. The value of v depends only on the shape of S, not on its
amplitude.

Note that this test uses a Gaussian approximation for the Poisson
fluctuations described by the covariance matrix N, so we apply an
additional cut on cells where this will be particularly inaccurate,
and reject cells with N, < 10. This value for the cut in N, is
a compromise between a value which renders the error term from
using the Gaussian approximation negligible and the necessity of
not removing too many cells. For this reason we do not apply this
test on scales with £ < 17.5h7! Mpc. We have reduced the redshift
range to 0.03 < z < 0.12 in order that our cut in N, does not
introduce any systematic effects.

The minimum values of v for a range of values for the cell size ¢
are shown in Fig. 11. We also plot error bars which are derived from
applying the test to cell divisions which are shifted by up to £/+/2
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Figure 11. Variation of (Vi) from the Tegmark test with scale. The solid
and dashed lines show the expected value and 1o variation for results consis-
tent with a linear bias relation. The solid and open squares show the average
Vmin and its lo scatter measured over a number of separate cell divisions
obtained by shifting the original divisions, for the NGP and SGP, respec-
tively. The grey solid and dashed curves show, respectively, the average and
1o spread of vpin for models including the effects of the selection function
variations on scales < £.

parallel to the RA —z plane, relative to the original division. Clearly
the error bars resulting from such an approach will underestimate
the true errors. In general the values of v, are not consistent with
a linear and deterministic relative bias; indeed the significance of
this detection increases as £ increases.

5.2.1 Interpretation of v min

The values of v, presented in Fig. 11 rule out the simple deter-
ministic linear bias model of equation (28) at high significance. The
level of significance suggested by v, should, however, be treated
with some caution, in particular since v, increases with increas-
ing ¢, which would be particularly counterintuitive if interpreted as
indicating non-linearity and/or stochasticity which was increasing
with scale. The largest cells contain a large number of galaxies so the
Poisson noise is small, but as there are so few cells for these values
of £, the results will be very sensitive to any systematic effects in the
counts, or in the determination of N.,. The extremely high values
for vy, in Tegmark & Bromley (1999) when this technique was ap-
plied to the LCRS are also an indication that v.,, cannot be naively
interpreted as the number of ‘sigma’ at which linear deterministic
bias is rule out by the data.

A possible instrumental effect which may exaggerate the signal
from this test on large scales is an interaction between complex rel-
ative bias on small scales and a selection function varying on scales
less than the cell division. Differences in the distribution of early-
and late-type galaxies on small scales, such as the morphology—
density relation, could lead to a significant fraction of the galaxies
of one type preferentially residing in a region of the cell in which
the selection function differs significantly from the cell average,
due, for example, to one of the drill holes in the survey mask. This
effect would cause the observed covariance of Ag to be enhanced
relative to what would be expected from simple Poisson noise as
described by equation (37). Note that in this example the observed
non-linearity/stochasticity at large £ is produced as an effect of non-
linearity/stochasticity on smaller scales.
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To test to what extent an effect such as the above could be respon-
sible for the results for v,,;,, we consider a simple model including
small-scale stochasticity and the small-scale variations of the selec-
tion function. We first generate linear bias models matching the data
by drawing 8 g from the best-fitting lognormal model and applying a
linear bias function to obtain ;. We then generate a parent number
of galaxies in each cell by Poisson sampling the density field with a
constant sampling rate assuming all the cells are 100 per cent com-
plete and with n(z) set to be a constant equal to the maximum n(z) at
the mean redshift of the survey. The parent galaxies are distributed
within each cell using a modified Rayleigh-Lévy flight model (see
Peebles 1980, section 62) matching the correlation function. We
have modified the original Rayleigh—Lévy flight model so that the
lacuniarity of the process is more realistic — in effect the voids in
our clustered point process are less empty. We then select or reject
the parent galaxies based on the selection function at the location
of each galaxy. The point processes for early- and late-type models
are independent.

The grey solid and dashed lines in Fig. 11 show the average
and lo spread of v,,;, when the Tegmark test is applied to our
Rayleigh-Lévy flight models. Qualitatively, the models appear to
reproduce the effect seen in our results. However, our simple model
is in some sense an extreme case: since the two galaxy distributions
are completely independent on scales < ¢, our models contain a
maximum degree of stochasticity on all scales less than the model
cell division. A realistic model for deterministic linear bias would
be very unlikely to give values for vy, as high as this, even if
instrumental effects such as the above were included. Hence, even
though the actual value of v;;, cannot be interpreted as an accurate
reflection of the degree of non-linearity or stochasticity present, we
conclude that complex bias must to some extent be present even on
large scales.

5.2.2 Linear relative bias parameters

We plot f from the best-fitting linear bias models in Fig. 12, again
with errors derived from cell shifts. Note that the values of f from
this test are not strictly comparable to the other values quoted in this
paper except in the case where a deterministic linear bias model is an
exactrepresentation of the data, since we have of necessity imposed a
cuton §g. However we expect that on large scales this approximation
will be close enough for comparison to be instructive. If we use the
slightly larger error bars derived from our Monte Carlo realizations
of Rayleigh-Lévy flight models, and assume measurements of f
in adjacent bins are correlated, we obtain f = 1.28 £ 0.03 for
the NGP and f = 1.16 £ 0.03 for the SGP. It is notable that the
best-fitting linear bias factors for the NGP and SGP regions do not
seem to be consistent. Averaging the two regions we find a value
for f which is consistent with our measurements of b,,, presented
in the previous section. A more relevant comparison is with the
maximum-likelihood measurements of the linear bias parameter,
which we present in the following section, where we find a similar
discrepancy between NGP and SGP regions which we discuss more
fully in Section 6.2.

5.3 Fitting the joint counts in cells

The results of the Tegmark test clearly indicate that a deterministic
linear bias model is not a satisfactory model for the relative bias
between early- and late-type galaxies, although we have indicated
some shortcomings of the test which may cause it to exaggerate the
significance with which such a model is ruled out on large scales.
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Figure 12. The value of the relative bias factor, by, giving the minimum
value for v in the Tegmark test. The solid triangles and open circles show
the average by and its 1o scatter measured over a number of separate cell
divisions obtained by shifting the original divisions, for the NGP and SGP,
respectively. The black error bars are a more realistic estimate for the errors
based on models including the effects of selection function variations on
scales < £.

However, the test does not reveal any further details of the nature of
the relative bias between galaxies of different spectral type. Blanton
(2000) describes a more direct approach to measuring the relative
bias and applies it to the Las Campanas Redshift Survey (LCRS).
The basis of this approach is a maximum-likelihood fit to the joint
counts in cells, P(Ng, N1 ), which is simply the joint probability of
the density fields convolved with Poisson distributions.

If we convolve equation (29) with the expected Poissonian scatter
we derive the following joint probability for the counts:

Ng
_ Mg —AE
P(Ng, NL) = /d5E ~ ¢ £ ()
Ng!

AN
) / doy. S e £(8y 15%), (39)
N
where

AE = NE‘exp(l + 8E)1

and similarly for the late types.

We use equation (39) to define the likelihood as a function of
o 1N and a model for the relative bias f(81|6g). We then find the
maximum likelihood using a downhill simplex method (Press et al.
1992) and hence estimate the best-fitting relative bias.

5.3.1 Deterministic bias models

The conditional density distribution function, f(81|5g), can in
principle describe completely the relationship between the galaxy
density fields, including any non-linearity or stochasticity. In this
paper we have concentrated on bias models in which the den-
sity field of the late types is related to that of the early types
in a deterministic manner, i.e. f(5.|0g) can be expressed in the
form

S (8L18e) = dp[8L — D(8p)El, (40)

where §p is the Dirac delta function. The possibility that the bias
relation may exhibit additional scatter above the Poisson fluctuations
is considered by Wild et al. (2004).
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The simplest form for the bias relation is
b(8g)de = bo + b6, (41)

corresponding to linear bias. Of course, this model gives unphys-
ical values for §;, when b; > 1 and —1 < g < O; in this case
we set b(6g) = 0, following the example of Blanton (2000) al-
though it is worth noting that in practice, since we have defined
the late-type density field in terms of the density field of early-type
galaxies, the best-fitting value for b, is always significantly less
than 1.

A simple generalization of the bias relation which includes non-
linear effects is a power-law bias model,

b(8r)Se = bo(1 + 85)" — 1. (42)

For both these models there is only one free parameter (), since
by is set by the requirement (6.) = 0.

‘We have fitted deterministic bias models to the counts in cells only
for £ > 14 h=! Mpc since below this scale the problem of empty cells
becomes significant. The parameters for the best-fitting linear bias
model over arange of cell sizes are shown in Fig. 13 (where we have
used 1/b, since this corresponds to what is normally understood as
the relative bias, namely b, = bg/bL, where bg, by correspond to
the linear bias factors for early and late types).

There is a systematic trend for the NGP early types to be more
strongly biased than in the SGP. Such a discrepancy, also seen in
the results from the modified x? test, was not observed in the vari-
ance measurements so it is important to consider whether the ef-
fect is indeed as significant as it would appear. Examination of the
two-dimensional likelihood contours reveals that in fact the bias pa-
rameter and o g are not significantly correlated, so neglecting o g
will not lead to an underestimation of the errors in b;. We have
also calculated errors by fitting Monte Carlo realizations of the bias
models including our measured errors in og. These are identical
in magnitude to the errors obtained from the likelihood function,
again suggesting that any correlation between b, and o is not
significant.

If we repeat our Monte Carlo error analysis using the Rayleigh—
Lévy flight models with a selection function that varies on scales
less than ¢, as in Section 5.2, the actual errors become rather larger.
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Figure 13. The best-fitting linear bias parameter, bg/by, = 1/by, as a
function of cell size £ for the NGP (filled triangles) and SGP (open circles)
regions. The grey error bars are derived by considering the value of b for
which £ = L, + 1. Black error bars adjacent to selected points are a more
realistic error estimate showing the effect on the errors of variation of the
selection function on scales less than £.
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Figure 14. The best-fitting power-law bias parameter, 1/b, as a function
of cell size £ for the NGP (filled triangles) and SGP (open circles) regions.
The grey error bars are derived by considering the value of b; for which
L = Lmin + 1. Black error bars adjacent to selected points are a more
realistic error estimate showing the effect on the errors of variation of the
selection function on scales less than £.

If we assume that measurements of b; in adjacent bins of £ are
correlated we obtain b j;, = 1.27 & 0.04 for the NGP and b, j;, =
1.17 &£ 0.04 for the SGP, which corresponds to just less than a 20
discrepancy.

The variation of the best-fitting power-law bias parameter (again
using 1/b, for consistency) with cell size € is shown in Fig. 14. If
we again assume that measurements of b, in adjacent bins of ¢ are
correlated, we obtain b pp. = 1.36 & 0.05 for the NGP and b, p;, =
1.29 £ 0.04 for the SGP. These results are noticeably higher than the
linear bias parameters, showing that the assumption of linear bias
pushes estimates of the bias parameter closer to unity to compensate
for non-linearities in the data. Once we account properly for non-
linear biasing the bias parameters approach consistency between
regions.

Examples of the joint counts in cells for £ =21 2~! Mpc compared
to the best-fitting linear and power-law bias models are shown in
Fig. 15, and illustrations of the power-law bias fits at arange of scales
are shown in Fig. 16. The points show the actual counts in cells.
The grey-scale and contour levels show the expected distribution
of cell counts, which we have generated using a large number of
Monte Carlo realizations of the bias model using the same expected
counts as the data. Poisson effects are responsible for the uneven
contours on smaller scales; these effects can also be seen in the
data.

To test if the models are acceptable fits to the data we have applied
a KS test to the 1D distributions of the late-type galaxies for these
bias models, i.e. to the projection on the late-type axis of the two-
dimensional distributions shown in Figs 15 and 16. The values of
Pxs for the linear and power-law bias models are shown in the final
two columns of Table 4; linear bias is excluded for £ < 28 2! Mpc
cells whereas a power-law bias model is not ruled out for any of the
scales considered. Fig. 17 shows the relative likelihood Ly, — L
of the two models; the power-law bias model is clearly a better fit
on smaller scales, although the difference between the goodness of
fit of the models decreases with scale, as one would expect from the
theoretical prejudice that linear bias should be a good approximation
on large scales.
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Figure 15. An example of the joint counts in cells for the SGP region with £ = 21 ! Mpc. The grey-scale and contour levels are derived from Monte Carlo
realizations of the best-fitting linear bias model (left) and the best-fitting power-law bias model (right), using the same expected counts as the data, and the
dotted lines indicate the 50, 70, 85 and 93 per cent significance levels. The solid line indicates a mean relative bias of 1 and the dashed line shows the mean

relative bias for the model.
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Figure 16. Contour plots of the joint counts in cells compared to the best-fitting power-law bias models for the SGP region over a range of cell sizes, from
left-right and top-bottom: £ = 14, 17.5, 24.5, 28, 31.5, 35 h~! Mpc. The grey-scale and contour levels are derived from Monte Carlo realizations as previously
and the dotted contours are at 50, 70, 85 and 93 per cent significance levels. The solid line indicates a mean relative bias of 1 and the dashed line shows the
mean relative bias for the model.
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Table 4. Average biasing parameters for the best-fitting power-law bias models assuming b, from the individual lognormal model fits to early and late types.
b1 1in and b pr, are the maximum-likelihood results of Section 5.3.1 using realistic error bars and , and o, are calculated from equations (31) and (33). The
KS test probabilities for the linear and power-law bias models are also shown.

£ (h~! Mpc) b1.1in bipL b b byar op Ps(linear bias) Pxs(PL bias)
14 0.8340.02 0.7640.02 0.6840.06 0.7+0.1 0.7340.02 0.2+0.3 1.3¢-5 0.269
21 0.8240.03 0.7540.03 0.6940.09 0.7+0.1 0.7340.04 0.240.5 0.004 0.412
28 0.7940.08 0.7540.08 0.7+£0.2 0.740.3 0.7440.06 0.1£2 0.688 0.712
35 0.8+0.1 0.7+0.1 0.7£0.2 0.7+0.4 0.7540.07 0.242 0.320 0.760
42 0.7+0.2 0.7+£0.2 0.7£0.5 0.7+0.9 0.740.1 0.2+3 0.723 0.957
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Figure 17. The relative likelihoods of the two deterministic bias models
when fitted to the joint counts-in-cells distribution. A value of 0 implies that
both models are equally good fits to the data; positive values indicate that
the power-law model is a better fit. Results are shown for the NGP (black
squares) and SGP (open circles). The dashed line shows the limit in £ beyond
which a linear bias models is not ruled out by the KS tests. The results, and
the error bars shown, are obtained from fits to cell divisions shifted from the
original cell division in the same manner as was used for the Tegmark tests
in Section 5.2.

5.3.2 Non-linear and stochastic bias

In the case of linear and deterministic bias, all three bias parame-
ters described at the start of the section (b, b and by, ), are equal to
the parameter b; in our model (equation 41). We tabulate the val-
ues of b and b for our best-fitting power-law bias model below. In
the absence of stochasticity we would have by, = b, but since we
already have an estimated value for by, from the independent fit-
ting of lognormal models to the early- and late-type counts in cells,
we can instead ask what value the stochastic bias parameter, o,
(equation 33), should take under the rather strong assumption that a
power-law bias completely describes any non-linearity, and that the
fitis not biased by any stochasticity. The average biasing parameters
under this assumption are summarized in Table 4. o, is generally
~0.2, although the large errors mean that we cannot claim to re-
quire excess stochasticity above Poisson noise within our errors. A
detailed model of stochastic relative bias is discussed by Wild et al.
(2004); our results are consistent with the more accurate measure-
ments presented in that paper. Similarly, the non-linearity quantified
by b/b from our measurements is entirely consistent with that mea-
sured by Wild et al. (2004). Szapudi & Pan (2004) describe an in-
teresting technique, based on the cumulative distribution functions,
which can in principle recover the full non-linear bias function. This

would enable a model-independent measurement of non-linearity
and stochasticity, although in unmodified form the technique is not
applicable to a flux-limited sample.

6 DISCUSSION

In this section we summarize and discuss in turn some of the main
results of the paper: the measurement of the variance and results from
fitting lognormal models to the one-point distribution function, a
comparison of the linear relative bias parameters obtained by each of
our measurement techniques, and finally a discussion of the evidence
for scale dependence of the relative bias.

6.1 Variances and the one-point distribution function

We have presented the variance of the counts in cells using the
maximum-likelihood technique of Efstathiou et al. (1990), which
we have shown is subject to a significant bias when dividing the
data into redshift shells of low volume. We have shown that the
method can be corrected for this integral constraint bias using the
approximation of Hui & Gaztafiaga (1999).

The one-point distribution of the counts in cells for early- and
late-type galaxies, and the distribution for n-types 1 and 2 combined,
has been fitted by lognormal models, using a maximum-likelihood
technique. The variances found using this technique are significantly
biased on small scales when empty cells are included in the anal-
ysis, and we have been able to measure reliable variances only by
fitting to counts in cells with empty cells removed. We have cor-
rected our results on small scales to compensate for the inevitable
bias resulting from the removal of empty cells. We find that the
lognormal model is in general an adequate fit to the distribution
functions, as measured by a Kolmogorov—Smirnov test. However,
the values for the variance implied by the best-fitting model param-
eters are slightly high in comparison with both predictions from
the correlation functions and relative to the direct counts-in-cells
variance measurements presented in this paper. The fact that this
bias can be corrected by introducing a weighting scheme giving
more weight to regions of higher density contrast suggests that the
lognormal model is not an ideal description of the true one-point
distribution. It is likely that a generalized lognormal model, such as
the ‘skewed’ lognormal model (SLNDFk) (Colombi 1994; Ueda &
Yokoyama 1996), would be a better approximation. Unfortunately,
the SLNDFk cannot be used in our maximum-likelihood approach
since it is not positive definite, and therefore is not strictly speaking
a distribution function.

6.2 Comparison of relative bias parameters

We show in Table 5 a comparison of the relative bias parameters
from all of the measurements presented in the paper. We have av-
eraged the bias measurements for all scales with £ > 14 h2~! Mpc
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Table 5. Average bias parameters over all scales from £ > 14h~'Mpc
for all of the measurements presented in the paper. Error bars are derived
assuming measurements for adjacent bins in £ scales are correlated.

Bias measurement NGP SGP
1/byar (from Efstathiou o (£)) 1.24+0.06 1.26+£0.04
1/byar (from o fits) 1.28+0.05 1.27+0.04
1/b1 jin (maximum likelihood) 1.2740.04 1.17£0.04
f =~ 1/b jin (Tegmark test) 1.284+0.03 1.1640.03
1/bypL 1.3610.05 1.2940.04

which we expect to be unaffected by biases from empty cells. The
error bars on each average are obtained assuming that the measure-
ments in adjacent bins in € are perfectly correlated, which is a better
approximation than assuming the measurements on separate scales
are independent. Where relevant we have also used the more realistic
error bars obtained from our Rayleigh-Lévy flight models.

As previously noted, the results for 1/by,. are consistent between
regions and also consistent between measurements from direct vari-
ance estimation and fitting lognormal models to the one-point dis-
tribution.

Comparing the two estimates of the linear relative bias param-
eter 1/b jin, from the maximum-likelihood method and from the
Tegmark test, we find in both cases a significant discrepancy be-
tween NGP and SGP regions. The magnitude of this discrepancy is
around 2o . On the other hand the power-law bias measurements are
approximately consistent between regions at a value of b, p. which
is further from unity. As we noted in Section 5.3.1 the assumption of
linear bias when fitting to joint counts in cells which contain a sig-
nificant degree of non-linearity pushes the best-fitting relative bias
closer to unity. This effect was also noted by Wild et al. (2004). It is
possible that the apparent discrepancy between NGP and SGP linear
bias parameters is also partly an artefact produced when non-linear
joint distributions are fitted with a linear bias model.

6.3 Scale dependence of the relative bias

In general, the relative bias is expected to be scale dependent on
small scales (r < r(). The scale at which the bias relation becomes
scale independent depends on the scales over which the biasing
mechanism(s) operates. Non-local bias models (Bower et al. 1993;
Matsubara 1999) are those on which the physical processes acting
to produce the bias act on scales larger than those defined by the
movement of massive particles, for example those models where
radiation from QSOs has a significant effect. Local bias models
(e.g. Narayanan, Berlind & Weinberg 2000) are those which are
defined by some property of the local matter field, for example its
density.

Narayanan et al. (2000) determine the variation with scale of a
number of local and non-local bias models applied to N-body sim-
ulations. A general conclusion of this work is that local bias models
are generically unable to influence the biasing relation on scales
greater than r = 8 h~! Mpc, which corresponds to £ ~ 12 h~! Mpc
in this work. Although there does appear to be some variation of the
best-fitting linear bias parameter on scales £ > 15 h~!, when we fac-
tor in the larger error bars derived from models including selection
function variation across cells in a more realistic way, the signifi-
cance of any variation becomes negligible. Even if the variation in
the linear bias parameter were significant it would not necessarily
imply scale dependence of the bias since there is no significant scale
dependence of the best-fitting power-law bias parameter. This illus-
trates the interdependence of non-linear, non-local and stochastic
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biasing effects. We conclude that any non-local contribution to the
relative bias cannot be a dominant effect on large scales.

A special case of local relative bias which was considered in detail
by Narayanan et al. (2000) is a local morphology density relation, of
the type measured in the local environment of clusters and groups
by, e.g. Postman & Geller (1984). A general conclusion for the
relative bias produced by such a local effect is that the constant bias
factor to which the scale-dependent bias asymptotes on large scales
is not equal to unity; assigning galaxy types based on local density
produces a difference in clustering strength of the different galaxy
types on all scales. Our results are fully consistent with this picture,
which leads on to the question of whether the relatively well-studied
morphology—density relation can be held solely responsible for the
relative bias measured in the 2dFGRS.

7 SUMMARY

We have measured the linear relative bias factor between early- and
late-type galaxies in 2dFGRS using a number of methods based
on the galaxy counts in cells and over a wide range of scales. In
general, all of the methods give consistent values for the relative
bias of ~1.3. We do not find any evidence for significant scale
dependence of the bias over the range of scales studied here. We
do find, however, that a linear deterministic bias model is a poor
approximation for the relative bias, particularly on small scales. We
have used a power-law bias model as an example of a deterministic
bias model including non-linearity. We find that a power-law bias
with an index b; ~ (.75 is a consistently better fit to the data than
linear bias.

The results presented in this paper are consistent with those pre-
sented in the complementary study of Wild et al. (2004) who mea-
sure a similar degree of non-linearity and stochasticity (b and o).
Their analysis uses smaller, volume-limited subsets of the 2dFGRS,
segregated by both spectral type and rest-frame colour. The fact
that our results, using the flux-limited catalogue, are consistent with
those of Wild et al., using a volume-limited sample, indicates that
our results are not significantly biased by systematic effects intro-
duced by the survey selection function. Wild et al. also measure a
slight variation in the non-linearity and stochasticity as a function of
scale; unfortunately the magnitude of the variation is too small to be
measured within our errors. It should be noted that the actual values
of the non-linearity and stochasticity parameters measured both in
this paper and in Wild et al. are model dependent. Perhaps the most
robust result of both papers is the conclusion that both non-linearity
and stochasticity are present in the relative bias even on quite large
scales.

Wild et al. (2004) also analyse a number of semi-analytic simula-
tions using similar techniques to those used in this paper. The models
analysed show similar degrees of non-linearity and stochasticity as
exhibited in the data. Complex relative bias is clearly a feature of
the galaxy distribution, resulting from the processes of galaxy for-
mation, which has effects over a wide range of scales. More detailed
analyses of future simulations should enable the precise causes to be
determined and in so doing provide a more thorough understanding
of galaxy formation, and of bias in general.
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