345 research outputs found

    Atmospheric absorption of sound: Update

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1121/1.400176Best current expressions for the vibrational relaxation times of oxygen and nitrogen in the atmosphere are used to compute total absorption. The resulting graphs of total absorption as a function of frequency for different humidities should be used in lieu of the grap

    Evaluation of the BCS Approximation for the Attractive Hubbard Model in One Dimension

    Full text link
    The ground state energy and energy gap to the first excited state are calculated for the attractive Hubbard model in one dimension using both the Bethe Ansatz equations and the variational BCS wavefunction. Comparisons are provided as a function of coupling strength and electron density. While the ground state energies are always in very good agreement, the BCS energy gap is sometimes incorrect by an order of magnitude, particularly at half-filling. Finite size effects are also briefly discussed for cases where an exact solution in the thermodynamic limit is not possible. In general, the BCS result for the energy gap is poor compared to the exact result.Comment: 25 pages, 5 Postscript figure

    An X-ray photoelectron spectroscopy investigation of chromium conversion coatings and chromium compounds

    Get PDF
    Hexavalent and trivalent chromium based conversion coatings on zinc electrodeposited steel have been investigated using X-ray photoelectron spectroscopy (XPS) with the aim of elucidating their film chemistry. Furthermore, a monochromatic Al Kα X-ray source was utilised and the spectra produced evaluated using curve fitting software to elucidate oxidation state information. In addition, a number of chromium compounds were investigated and used to complement the curve fitting analysis for the conversion coatings. High resolution Cr2p spectra from chromium compounds exhibited multiplet splitting for Cr2O3. Additional satellite emissions can also be observed for Cr2O3 and Cr(OH)3. Curve fitting of hexavalent chromium conversion coating (CCC) 2p3/2 spectra contained both Cr(VI) and Cr(III) species with the content of the former slightly higher when the X-ray beam take-off angle (TOA) was reduced to determine more surface specific information. The Cr(III) content was determined to be mainly composed of Cr(OH)3 with some Cr2O3. In comparison, trivalent CCCs were largely composed of Cr2O3 as opposed to Cr(OH)3. Survey scans of both coatings revealed that the trivalent CCCs had a higher relative zinc content

    A class of Calogero type reductions of free motion on a simple Lie group

    Full text link
    The reductions of the free geodesic motion on a non-compact simple Lie group G based on the G+×G+G_+ \times G_+ symmetry given by left- and right multiplications for a maximal compact subgroup G+GG_+ \subset G are investigated. At generic values of the momentum map this leads to (new) spin Calogero type models. At some special values the `spin' degrees of freedom are absent and we obtain the standard BCnBC_n Sutherland model with three independent coupling constants from SU(n+1,n) and from SU(n,n). This generalization of the Olshanetsky-Perelomov derivation of the BCnBC_n model with two independent coupling constants from the geodesics on G/G+G/G_+ with G=SU(n+1,n) relies on fixing the right-handed momentum to a non-zero character of G+G_+. The reductions considered permit further generalizations and work at the quantized level, too, for non-compact as well as for compact G.Comment: shortened to 13 pages in v2 on request of Lett. Math. Phys. and corrected some spelling error

    Series study of the One-dimensional S-T Spin-Orbital Model

    Full text link
    We use perturbative series expansions about a staggered dimerized ground state to compute the ground state energy, triplet excitation spectra and spectral weight for a one-dimensional model in which each site has an S=\case 1/2 spin Si{\bf S}_i and a pseudospin Ti{\bf T}_i, representing a doubly degenerate orbital. An explicit dimerization is introduced to allow study of the confinement of spinon excitations. The elementary triplet represents a bound state of two spinons, and is stable over much of the Brillouine zone. A special line is found in the gapped spin-liquid phase, on which the triplet excitation is dispersionless. The formation of triplet bound states is also investigated.Comment: 9 pages, 9 figure

    A Unified Algebraic Approach to Few and Many-Body Correlated Systems

    Full text link
    The present article is an extended version of the paper {\it Phys. Rev.} {\bf B 59}, R2490 (1999), where, we have established the equivalence of the Calogero-Sutherland model to decoupled oscillators. Here, we first employ the same approach for finding the eigenstates of a large class of Hamiltonians, dealing with correlated systems. A number of few and many-body interacting models are studied and the relationship between their respective Hilbert spaces, with that of oscillators, is found. This connection is then used to obtain the spectrum generating algebras for these systems and make an algebraic statement about correlated systems. The procedure to generate new solvable interacting models is outlined. We then point out the inadequacies of the present technique and make use of a novel method for solving linear differential equations to diagonalize the Sutherland model and establish a precise connection between this correlated system's wave functions, with those of the free particles on a circle. In the process, we obtain a new expression for the Jack polynomials. In two dimensions, we analyze the Hamiltonian having Laughlin wave function as the ground-state and point out the natural emergence of the underlying linear W1+W_{1+\infty} symmetry in this approach.Comment: 18 pages, Revtex format, To appear in Physical Review

    Life path analysis: scaling indicates priming effects of social and habitat factors on dispersal distances

    Get PDF
    1. Movements of many animals along a life-path can be separated into repetitive ones within home ranges and transitions between home ranges. We sought relationships of social and environmental factors with initiation and distance of transition movements in 114 buzzards Buteo buteo that were marked as nestlings with long-life radio tags. 2. Ex-natal dispersal movements of 51 buzzards in autumn were longer than for 30 later in their first year and than 35 extra-natal movements between home ranges after leaving nest areas. In the second and third springs, distances moved from winter focal points by birds that paired were the same or less than for unpaired birds. No post-nuptial movement exceeded 2 km. 3. Initiation of early ex-natal dispersal was enhanced by presence of many sibs, but also by lack of worm-rich loam soils. Distances travelled were greatest for birds from small broods and with relatively little short grass-feeding habitat near the nest. Later movements were generally enhanced by the absence of loam soils and short grassland, especially with abundance of other buzzards and probable poor feeding habitats (heathland, long grass). 4. Buzzards tended to persist in their first autumn where arable land was abundant, but subsequently showed a strong tendency to move from this habitat. 5. Factors that acted most strongly in ½-km buffers round nests, or round subsequent focal points, usually promoted movement compared with factors acting at a larger scale. Strong relationships between movement distances and environmental characteristics in ½-km buffers, especially during early ex-natal dispersal, suggested that buzzards became primed by these factors to travel far. 6. Movements were also farthest for buzzards that had already moved far from their natal nests, perhaps reflecting genetic predisposition, long-term priming or poor habitat beyond the study area

    Mechanochemical tuning of a kinesin motor essential for malaria parasite transmission

    Get PDF
    Plasmodium species cause malaria and kill hundreds of thousands annually. The microtubule-based motor kinesin-8B is required for development of the flagellated Plasmodium male gamete, and its absence completely blocks parasite transmission. To understand the molecular basis of kinesin-8B’s essential role, we characterised the in vitro properties of kinesin-8B motor domains from P. berghei and P. falciparum. Both motors drive ATP-dependent microtubule gliding, but also catalyse ATP-dependent microtubule depolymerisation. We determined these motors’ microtubule-bound structures using cryo-electron microscopy, which showed very similar modes of microtubule interaction in which Plasmodium-distinct sequences at the microtubule-kinesin interface influence motor function. Intriguingly however, P. berghei kinesin-8B exhibits a non-canonical structural response to ATP analogue binding such that neck linker docking is not induced. Nevertheless, the neck linker region is required for motility and depolymerisation activities of these motors. These data suggest that the mechanochemistry of Plasmodium kinesin-8Bs is functionally tuned to support flagella formation
    corecore