Abstract

The reductions of the free geodesic motion on a non-compact simple Lie group G based on the G+×G+G_+ \times G_+ symmetry given by left- and right multiplications for a maximal compact subgroup G+GG_+ \subset G are investigated. At generic values of the momentum map this leads to (new) spin Calogero type models. At some special values the `spin' degrees of freedom are absent and we obtain the standard BCnBC_n Sutherland model with three independent coupling constants from SU(n+1,n) and from SU(n,n). This generalization of the Olshanetsky-Perelomov derivation of the BCnBC_n model with two independent coupling constants from the geodesics on G/G+G/G_+ with G=SU(n+1,n) relies on fixing the right-handed momentum to a non-zero character of G+G_+. The reductions considered permit further generalizations and work at the quantized level, too, for non-compact as well as for compact G.Comment: shortened to 13 pages in v2 on request of Lett. Math. Phys. and corrected some spelling error

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 15/03/2019