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RESEARCH PAPER
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Abstract

Flower sepals are critical for flower development and vary greatly in life span depending on their function post-
pollination. Very little is known about what controls sepal longevity. Using a sepal senescence mutant screen, we 
identified two Arabidopsis mutants with delayed senescence directly connecting strigolactones with senescence 
regulation in a novel floral context that hitherto has not been explored. The mutations were in the strigolactone bio-
synthetic gene MORE AXILLARY GROWTH1 (MAX1) and in the strigolactone receptor gene DWARF14 (AtD14). The 
mutation in AtD14 changed the catalytic Ser97 to Phe in the enzyme active site, which is the first mutation of its kind 
in planta. The lesion in MAX1 was in the haem–iron ligand signature of the cytochrome P450 protein, converting the 
highly conserved Gly469 to Arg, which was shown in a transient expression assay to substantially inhibit the activity 
of MAX1. The two mutations highlighted the importance of strigolactone activity for driving to completion senescence 
initiated both developmentally and in response to carbon-limiting stress, as has been found for the more well-known 
senescence-associated regulators ethylene and abscisic acid. Analysis of transcript abundance in excised inflor-
escences during an extended night suggested an intricate relationship among sugar starvation, senescence, and 
strigolactone biosynthesis and signalling.

Keywords:  Arabidopsis, AtD14, darkness, MAX1, mutants, sepal senescence, strigolactones, sugar starvation.

Introduction

Senescence typically occurs in mature cells of tissues after their 
growth phase has ceased to enable efficient recycling of nu-
trients to new growing sinks such as seeds (Thomas, 2013). 
At the whole-plant level, senescence is considered critical for 
plant fitness, enabling plants to survive optimally in their given 

environments. The ability to senesce requires a change in com-
petency of the tissue that happens during ageing (Jing et al., 
2005; Fracheboud et  al., 2009). Nevertheless, imposition of 
stress can make tissues senesce early. Prolonged darkness is a 
stress that results in carbon deprivation and early senescence 
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of chlorophyllous tissues. This has been observed in individu-
ally covered attached leaves (Weaver and Amasino, 2001; Law 
et al., 2018), and in sepals of immature inflorescences of broc-
coli and Arabidopsis (Page et al., 2001; Trivellini et al., 2012). 
Research on the precocious senescence of these tissues has re-
vealed that the signalling key to their degreening is similar to 
that occurring naturally in leaves in planta as they senesce in an 
age-dependent manner and in response to canopy shading. For 
example, the phytochrome-interacting factor genes PIF4 and 
PIF5 that have important roles in the shade response of canopy 
leaves (Sakuraba et al., 2014) were first identified to regulate 
the precocious degreening of harvested immature inflores-
cences of Arabidopsis held in the dark (Trivellini et al., 2012). 
Similarly, mutations in EIN2 and ORESARA1/ANAC092 
that alter the timing of sepal senescence of dark-held inflor-
escences (Trivellini et  al., 2012) were previously identified 
in Arabidopsis as components of the feedforward control of 
age-related leaf senescence (Kim et al., 2009).

Phytohormones have long been known to have key roles 
in senescence regulation. Ethylene, salicylic acid, abscisic acid, 
jasmonic acid, and brassinosteroid promote the onset or pro-
gression of senescence, whereas cytokinin, gibberellic acid, and 
auxin delay the process (Gan and Amasino, 1997; Lim et  al., 
2007). The hormones do not work alone, but rather in con-
cert with each other to control senescence progression. For ex-
ample, ethylene, abscisic acid, and jasmonates interact to control 
the timing and progression of leaf senescence in Arabidopsis 
(Kim et al., 2011).

More recently, strigolactones (SLs), which are well known 
for their function in regulating seed germination in parasitic 
plants (Toh et al., 2012; Wang and Bouwmeester, 2018), plant 
shoot branching (Gomez-Roldan et al., 2008; Umehara et al., 
2008), and stress responses such as to drought and high sal-
inity (Bu et al., 2014; Ha et al., 2014), were reported to regu-
late natural- and dark-induced leaf senescence (Hamiaux et al., 
2012; Yamada et  al., 2014; Ueda and Kusaba, 2015). SL bio-
synthesis starts with the conversion of all-trans-β-carotene 
into carlactone (CL), a common precursor of all SLs (Alder 
et al., 2012; Seto et al., 2014; Wang and Bouwmeester, 2018). 
In Arabidopsis, this requires the sequential activities of the ca-
rotenoid isomerase DWARF27 (D27) and two carotenoid 
cleavage dioxygenases CCD7/MAX3 and CCD8/MAX4 
(Alder et  al., 2012). Following this, the MORE AXILLARY 
GROWTH1 (MAX1) cytochrome P450 monooxygenase 
(Booker et al., 2005) oxidizes CL into carlactonoic acid (CLA) 
(Abe et al., 2014), which is further converted by downstream 
enzymes to other SL-like compounds (Brewer et  al., 2016). 
The bioactive SL is perceived by the D14 receptor, an α/β-
fold hydrolase (Arite et  al., 2009), which hydrolyses the SL 
then interacts with the F-box protein MAX2/D3 to trigger 
SL signalling and response (Yao et al., 2016).

Very little is known about how sepal senescence is regu-
lated, with most research on flowers having focused on petals 
(Rogers, 2013). To identify key regulators of sepal senescence, we 

systematically evaluated a population of mutant Arabidopsis plants 
derived from seeds treated with ethyl methanesulfonate (EMS). 
By using an Arabidopsis inflorescence degreening assay (Hunter 
et al., 2018), we previously identified three independent mutations 
in Chl b reductase that resulted in a delayed degreening pheno-
type (Jibran et al., 2015). Here we report on the characterization of 
a further two mutants with delayed senescence that highlight the 
role of SLs in controlling the life span of a floral organ.

Materials and methods

Plant growth conditions and mutant analysis
EMS mutants of Arabidopsis thaliana Landsberg erecta (Ler-0) were selected 
and the causal mutations determined as described in Jibran et al. (2015), 
Hunter et al. (2018), Supplementary Fig. S1, and Supplementary Table S1. 
Mutants were backcrossed twice to wild-type (WT) Ler-0 prior to ana-
lysis and genetic complementation. Seeds were germinated and grown in 
a temperature-controlled growth chamber set at 21 °C with 65% relative 
humidity and under a 16 h light (200 μM photons m–2 s–1; Gro-Lux and 
cool-white fluorescent lamps)/8 h dark cycle (long day) unless otherwise 
stated. For in planta assays, plants were grown in a temperature-controlled 
growth cabinet (Contherm Model CAT 630, Wellington, New Zealand), at 
20–22 °C with 60% relative humidity and a 16 h light/8 h dark long-day 
photoperiod (~180 μE with metal halide lamps). For long-day treatments, 
inflorescences were placed in a container, covered with transparent film, and 
incubated in the growth chamber. For SL treatments, inflorescences were 
treated with the racemic mixture rac-GR24, which contains a synthetic 
SL analogue (Chiralix, Nijmegen, The Netherlands). This was dissolved in 
pure DMSO and diluted to final concentrations of 5 µM rac-GR24 and 1% 
(v/v) DMSO. Mock treatments for controls were 1% (v/v) DMSO.

Chlorophyll analysis
Chlorophyll (Chl) was extracted from single inflorescences according to 
Jibran et al. (2015) with the following changes: fresh samples were used 
and samples were incubated in the dark at 4  °C for 4 d after adding 
ethanol.

RNA isolation and RT–qPCR analysis
Total RNA was isolated from inflorescences using the Quick-RNA™ 
MiniPrep kit (Zymo Research, Irvine, CA, USA) with on-column 
DNase treatment. cDNA was synthesized from RNA (500  ng) using 
iScript™ Reverse Transcription Supermix for quantitative reverse tran-
scription–PCR (RT–qPCR; Bio-Rad, Hercules, CA, USA). The cDNA 
template was diluted 10 times for RT–qPCR analysis. The RT–qPCR 
was prepared using a LightCycler® 480 SYBR Green I  Master kit 
(Roche Diagnostics, Mannheim, Germany) and the PCR was performed 
with a LightCycler® 480 Instrument II (384-well; Roche Diagnostics) 
on three biological replicates, each with 4–6 pooled inflorescences from 
individual plants (four technical replicates for each biological replicate). 
Primers were designed using QuantPrime online software (Arvidsson 
et al., 2008) and are listed in Supplementary Table S2. The Cp value was 
calculated using the algorithm of ‘Abs Quant/2nd Derivative Max’ pre-
sent in LightCycler® 480 Software (version 1.5). Data were normalized 
to the reference gene PP2AA3 (At1g13320), which was confirmed to be 
stable for development and environmental conditions (Czechowski et al., 
2005), senescence (Jibran et al., 2015), and SL treatment (Supplementary 
Fig. S2), and relative transcript abundance changes were calculated using 
the ΔΔCt method (Livak and Schmittgen, 2001; Dvinge and Bertone, 
2009).
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nCounter analysis
Transcriptional analysis was performed using the nCounter Analysis 
System (NanoString, Seattle, WA, USA) (Geiss et al., 2008). Two sets of 
gene-specific probes (along with a reporter probe and a capture probe) 
were designed by NanoString Support (see Supplementary Table S3). Total 
RNA (300 ng) was hybridized using the nCounter PlexSet-24 Reagent 
Pack according to the ‘PlexSet™ Reagents User Manual’. After hybrid-
ization, samples were vertically pooled and were placed on the automated 
nCounter Prep Station (NanoString) for purification and immobilized 
in the cartridge. This cartridge was then transferred to the nCounter 
Digital Analyzer for data collection. Data analysis was performed with 
nSolver™ 4.0 Analysis Software according to the user manual. All sam-
ples passed quality control. The background thresholding was set to ‘12’ 
according to the count value of the internal negative control. Positive 
control normalization was carried out by using the geometric mean of 
the top three positive counts. Reference gene normalization was cal-
culated using the geometric mean of counts for the three reference 
genes PP2AA3/At1g13320, ACT2/At3g18780, and MON1/At2g28390 
(Czechowski et al., 2005).

In silico analysis
Sequence alignments were performed using Geneious desktop software 
(Kearse et  al., 2012). The three-dimensional (3D) structure of AtD14 
was obtained from the SL-induced AtD14–D3–ASK1 complex (PDB: 
5HZG) (Yao et al., 2016). The homology model of MAX1 was calcu-
lated using the I-TASSER On-line Server (https://zhanglab.ccmb.med.
umich.edu/I-TASSER/) (Zhang, 2008; Roy et  al., 2010; Yang et  al., 
2015). The 3D images were prepared with CCP4MG (McNicholas et al., 
2011).

Plasmid constructions
For transient expression assays, the Arabidopsis Col-0-based SL biosyn-
thetic genes (D27, MAX3, MAX4, and MAX1) were cloned as described 
in Zhang et al. (2014). The Ler-0-based MAX1 gene and genetic variants 
(MAX1-WT, MAX1-G469R, or MAX1-G469A) were cloned using the 
same protocol but with the primers listed in Supplementary Table S4.

Transient expression in leaves of Nicotiana benthamiana
Enzymatic characterization of MAX1 and the genetic variants was car-
ried out as described in Zhang et  al. (2014) except that Agrobacterium 
tumefaciens was resuspended in 50  mM MES (Duchefa, Haarlem, The 
Netherlands)–KOH buffer (pH 5.6) containing 2 mM NaH2PO4 (Merck, 
Darmstadt, Germany), 100 µM acetosyringone (Sigma-Aldrich, St. Louis, 
MO, USA), and 0.5% (w/v) glucose (MP Biomedicals, France) to a final 
OD600 of 0.5. Instead of OsD27, OsCCD7, and OsCCD8, we used 
AtD27, MAX3, and MAX4, which were co-infiltrated with AtMAX1 
and genetic variants to study the conversion of CL to CLA. Infiltration 
was performed using 4-week-old N. benthamiana plants which were soil 
grown in pots in a plant house with artificial light to make a photoperiod 
of 16 h light at 25 °C and 8 h dark at 22 °C. For each gene combination, 
six individual plants were used as biological replicates.

Analysis of carlactone and carlactonoic acid in N. benthamiana
CL and CLA were detected using ultra-high performance-LC-MS/
MS (UHPLC-LC-MS/MS) and CLA conjugates with UPLC-LC-
quadrupole-time-of-flight-MS (UHPLC-qTOF-MS). For both analyses, 
200 mg of fine-ground N. benthamiana leaves were extracted in 2 ml of 
ethyl acetate, using GR24 (5 pmol) as internal standard. Samples were 
vortexed and centrifuged for 20 min at 2000 g at 4 °C. The supernatant 
was dried in vacuo. Prior to mass analysis, samples were reconstituted in 

100 µl of 25% acetonitrile/water (v/v) and filtered using a micro-spin 
0.2  µm nylon membrane filter (Thermo Fisher Scientific, Waltham, 
MA, USA).

Targeted analysis of CL and CLA was performed using an Acquity 
UPLC system (Waters, Milford, MA, USA) coupled to a Xevo® 
TQ-XS triple-quadrupole mass spectrometer (Waters MS Technologies, 
Manchester, UK) with electrospray interface. Samples were injected 
onto a reverse-phase UPLC® Acquity BEH C18 column (2.1×100 mm, 
1.7 µm, Waters) at 45 °C. Retention of analytes was controlled by gra-
dient elution of 15 mM formic acid in water (A) and 15 mM formic 
acid in acetonitrile (B) at a flow rate of 0.4 ml min–1. The 10 min linear 
gradient started by isocratic elution at 0–0.5 min with 5% B, increased to 
60% B in 1.5 min, and to 90% B in the next 5.3 min. The column was 
washed for 1.5 min with 90% B and equilibrated for initial conditions 
for 1.5 min. The eluate was introduced in the electrospray interface ion 
source of the triple quadrupole MS analyser, operating in both posi-
tive and negative mode with the following conditions: capillary voltage, 
1.2 kV; ion source/desolvation temperature, 150/600  °C; desolvation/
cone gas flow, 1000/150 l h–1; cone voltage, 20–25 V; and collision energy, 
18–25 eV. MS data were recorded in multiple reaction monitoring mode 
(MRM) of four characteristic transitions for each of the compounds. The 
MassLynx™ software package (version 4.2, Waters) was used to operate 
the instrument, and acquire and process MS data.

Detection and quantification of carlactonoic acid conjugates by 
UHPLC-qTOF-MS
The N. benthamiana leaf extracts were analysed by UHPLC-qTOF-MS 
consisting of an Agilent 1290 liquid chromatograph coupled to a Bruker 
Daltonics microTOF-Q mass spectrometer (Bremen, Germany). The li-
quid chromatograph was equipped with a KINETEX® XB-C18 column 
(2.1 mm×100 mm, 2.6 μm; Phenomenex). Mobile phase A consisted of 
5% (v/v) acetonitrile in water and 0.1% (v/v) formic acid, whereas mo-
bile phase B consisted of 95% (v/v) acetonitrile and 0.1% (v/v) formic 
acid. The gradient was 0–3 min (isocratic at 95% A), 3–35 min (increase 
to 100% B), 40–41 min (decrease to 95% A), and column equilibration 
for 9 min at initial conditions (95% A). The chromatographic run lasted 
40 min with a flow rate of 0.2 ml min–1. The mass spectrometer was 
operated in negative mode. The mass spectrometer’s settings were: dry 
gas flow rate, 8 l min–1 at 220  °C; capillary voltage, 3.8  kV; collision 
energy, 10 eV; and collision radiofrequency, 1200 Vpp. The qTOF was 
operated with the m/z range set from 50 Da to 1500 Da. The injec-
tion volume was 10 μl. Acquisition of LC-MS data was performed using 
Bruker DataAnalysis 4.3.

Statistical analysis
Statistical analysis was performed with GenStat 17th Edition (a VSNI 
product: https://www.vsni.co.uk/software/genstat/). One-way ANOVA 
[Fisher’s protected least significant difference (LSD) test P<0.05] was 
used to determine the statistical significances for the Chl data, RT-qPCR 
data, and nCounter data for a period of 72 h of dark treatment in WT 
Ler-0. A linear mixed model was used to determine the differences for 
the data of 6 h and 18 h treatments in both WT and max1-5/dis15 (with 
rac-GR24 or 1% DMSO treatment). Comparisons among means were 
made using LSDs at P=0.05 (5% LSD). CL and CLA data were analysed 
using one-way ANOVA. To equalize the variances, the variables were 
log transformed prior to analysis. Comparisons among means were made 
using 5% Fisher’s LSDs.

Accession numbers
Gene and protein accession numbers are listed in Supplementary Table S5.
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Results

Two EMS mutants exhibit delayed dark-induced 
senescence of excised immature inflorescences

We identified two EMS mutants with immature inflorescences 
that when detached and held in the dark exhibited delayed sepal 
degreening compared with the WT. They were designated delayed 
inflorescence senescence (dis) 9 and dis15 (Fig. 1A). We confirmed 
that their immature inflorescences retained more Chl than the 
WT at day 3 of dark incubation (Fig. 1B). Transcripts of senes-
cence markers SAG12 (Grbic, 2003) and ANAC092 (Balazadeh 
et al., 2010) were not detected in the freshly harvested inflores-
cences, and their increased transcript abundance was suppressed 
in the two mutants compared with the WT at 72 h of dark incu-
bation (Fig. 1C, D). This suggested that the delayed degreening of 
the mutants resulted from slower progression of senescence.

Both mutants backcrossed to the Ler-0 WT segregated ~3:1 
(WT:mutant) for their delayed degreening trait (Supplementary 
Table S6), indicating that a single locus was responsible for their 
dis phenotype. These two mutants were also shorter and had 
more flowering stalks compared with the WT (Supplementary 
Fig. S3), traits that co-segregated with their dis phenotype. This 
suggested that the two DIS loci control senescence of excised 
immature inflorescences in the dark and flowering stem elong-
ation and branching in planta.

dis9 and dis15 also exhibit delayed sepal degreening 
in planta

We hypothesized that the DIS loci in both mutants would also 
control sepal degreening during plant development because 
genes that are key for regulating dark-induced leaf senescence 

Fig. 1. Characterization of two EMS mutants displaying delayed degreening of excised dark-incubated inflorescences. (A) Degreening of dark-incubated 
inflorescences. Inflorescences were excised and placed in water and incubated in the dark for 5 d. Three biological replicates are shown. (B) Total 
chlorophyll retention (% of day 0 value) at day 3 of dark incubation. Data are means ±SE (n=6). Letters represent significant differences between Ler-0 
and dis mutants in one-way ANOVA (Fisher’s protected LSD test P<0.05). (C) Transcript abundance of ANAC092 in Ler-0 and dis mutants at 0 and 72 h. 
(D) Transcript abundance of SAG12 in Ler-0 and dis mutants at 0 and 72 h. Transcript abundance was normalized to that of PP2AA3 and expressed 
relative to Ler-0 at 0 h. Data are means ±SE (n=3). Letters represent significant differences between Ler-0 and dis mutants at 72 h dark incubation for 
each gene comparison in one-way ANOVA (Fisher’s protected LSD test P<0.05). Means with the same letter denote not significantly different between 
dis9 and dis15.
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also regulate natural senescence (J. Kim et al., 2018). We grew 
plants for 4–5 weeks in long-day conditions to allow the floral 
organs to develop and observed the colour of the sepals when 
they started to abscise. In four independent experiments, the 
sepals of the mutants were always green when they abscised, 
whereas in comparable WT plants they were yellow (Fig. 2A, 
B; Supplementary Fig. S4). The delayed sepal yellowing also 
occurred in the detached inflorescences that were incubated in 
long-day conditions (Fig. 2C; Supplementary Fig. S4). This in-
dicated that in addition to affecting the timing of dark-induced 
degreening, the DIS loci also controlled sepal degreening in 
planta and in detached inflorescences held in long days.

dis9 and dis15 have point mutations in AtD14 and 
MAX1, respectively

Both mutants were crossed to Col-0 for mapping purposes, 
and their causal mutations were identified using a combin-
ation of high resolution melting (HRM)-based mapping 
and whole-genome sequencing analysis. The dis9 mutation 
was identified as a C to T transition at position 290 down-
stream of the translation start site (TSS) of the Arabidopsis 
D14 gene (AtD14, AT3G03990) (Supplementary Fig. S1A), 
encoding a α/β-fold hydrolase protein that functions as an 
SL receptor (Arite et al., 2009; Yao et al., 2016). The mutation 
causes a substitution of Ser to Phe at position 97 (S97F) of 
AtD14. The dis15 mutation was identified as a G to A tran-
sition at position 1405 downstream of the TSS of the coding 

sequence of the MAX1 gene (AT2G26170) (Supplementary 
Fig. S1B). This mutation resulted in a substitution of Gly 
to Arg at position 469 (G469R) in the MAX1 cytochrome 
P450 monooxygenase (Booker et al., 2005) that is involved 
in SL biosynthesis converting CL to CLA (Abe et al., 2014). 
The dis9 and dis15 degreening phenotypes were comple-
mented by WT AtD14 and MAX1 genomic regions, re-
spectively (Supplementary Figs S5, S6). These two mutants 
were therefore renamed d14-6/dis9 and max1-5/dis15, 
respectively.

Highly conserved amino acids are substituted in AtD14 
and MAX1

The D14-S97F substitution in d14-6/dis9 occurred in the 
Ser–His–Asp catalytic triad responsible for hydrolase activity 
of the receptor (Abe et al., 2014). The importance of the Ser97 
residue for hydrolase activity is supported by its high conser-
vation in orthologues from other species (Arite et  al., 2009; 
Gao et al., 2009; Liu et al., 2009; Hamiaux et al., 2012; de Saint 
Germain et  al., 2016; Zheng et  al., 2016) and the paralogue 
AtKAI2 (Waters et al., 2012) (Fig. 3A). It is also supported by 
the finding that replacing Ser with a non-nucleophilic residue 
abolishes activity of the receptor protein expressed in vitro 
(Abe et al., 2014) and prevents formation of a covalently linked 
intermediate molecule (CLIM) in the active site of the pro-
tein (Yao et  al., 2016) (Fig. 3B). Therefore, the SL-defective 
phenotype of d14-6/dis9 strongly suggested that substitution 

Fig. 2. Delayed sepal degreening of dis9 and dis15 in planta and in detached immature inflorescences held in long-day conditions. (A) Inflorescences 
attached to plants. Inflorescences from the primary bolts of 4.5-week-old wild-type and dis plants were photographed. Two biological replicates 
with representative abscising sepals (in white squares and magnified) are shown. (B) Degreening of sepals in planta. Flowers of 5-week-old plants 
were harvested when their sepals were just starting to abscise. Each flower of the seven biological replicates is from an independent plant. (C) Sepal 
degreening of excised inflorescences. Inflorescences were harvested from the primary bolts of 4.5-week-old plants that had their first flower opened 
on the same day. The inflorescences with removed opened buds were placed in water and incubated for 3 d. Three biological replicates are shown. 
Representative sepals are indicated by red arrows.
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of Ser97 to Phe (a non-nucleophilic amino acid) also caused 
loss of receptor activity in planta.

The MAX1-G469R substitution in max1-5/dis15 occurred 
in the last residue of the Cys haem–iron ligand signature 
[FW]-[SGNH]-x-[GD]-{F}-[RKHPT]-{P}-C-[LIVMFAP]-
[GAD], which is highly conserved in the cytochrome P450 
superfamily (Prosite: https://prosite.expasy.org/PDOC00081). 

This G469 residue is invariant in all MAX1 functional 
orthologues studied thus far (Fig. 3C) (Yoneyama et al., 2018). 
However, as the ligand signature [GAD] indicates, Gly (G) can 
be replaced by Ala (A) or Asp (D). This occurs at very low fre-
quency in the wider cytochrome P450 protein family, with G 
replaced by A in 3.4% or by D in 0.18% of the 1087 predicted 
cytochrome P450 proteins that have the Cys haem–iron ligand 

Fig. 3. Location of the substituted amino acids in the D14 and MAX1 proteins. (A) Sequence alignment of Arabidopsis D14 with characterized 
homologues. The position of the mutation at Ser97 (S97) in AtD14 is indicated in red. Amino acid positions are based on the Col-0 sequence from TAIR. 
Aligned sequences were sorted by the differences from the AtD14 reference sequence. Intensity of shading represents the percentage similarity of each 
residue among characterized D14 orthologues. At, Arabidopsis; Os, rice; Ph, petunia; Pt, poplar; Ps, pea; and the paralogue AtKAI2. (B) Structure of 
AtD14 from the SL-induced AtD14–D3–ASK1 complex (PDB: 5HZG). The covalently linked intermediate molecule (CLIM) is shown as orange and red 
sticks. The catalytic triad residues Ser97 and His247 are shown in atomic colouring as grey/blue/red sticks. AtD14 is shown in cartoon representation 
coloured in a rainbow scheme (N- to C- terminus from blue to red). (C) Sequence alignment of Arabidopsis MAX1 with its functional orthologues showing 
the cysteine haem–iron ligand signature. The position of the mutation at Gly469 (G469) and of the haem–iron ligand at Cys467 (C467) in Arabidopsis 
MAX1 is indicated in red and black, respectively. Amino acid positions are based on the Col-0 sequence from TAIR. Aligned sequences were sorted by 
the differences from the AtMAX1 reference sequence. Intensity of shading represents the percentage similarity of each residue among MAX1 orthologues. 
At, Arabidopsis; Sl, tomato; Sm, Selaginella; Os, rice; Ph, petunia; Pt, poplar; Zm, maize. (D) MAX1 modelled on the structure of the closely related 
human cytochrome P450 CYP3A4 (PDB: 1TQN). The haem group is presented as purple sticks (carbons mostly), which is indicated by a purple arrow. 
The side chain of Cys467 (in black; haem ligand) is represented by sticks (carbon is purple and sulfur is yellow). The position of Gly469 is indicated by the 
grey sphere and is highlighted by a red arrow. The structure is presented in cartoon representation coloured in a rainbow scheme (N- to C- terminus from 
blue to red).
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pattern (according to the Prosite database) (Supplementary Fig. 
S7). We modelled the 3D structure of AtMAX1 on the most 
closely related cytochrome P450 (human cytochrome P450 
CYP3A4) (Yano et al., 2004) with a protein crystal structure 
available (sequence identity of 28% and E-value of 7e-51). 
The model showed that G469 is in the haem pocket, packed 
against the haem group and close to the haem–iron ligand Cys 
(Cys467) (Fig. 3D).

G469R substitution in max1-5/dis15 disrupts enzyme 
activity of MAX1

To confirm the loss of activity of MAX1-G469R sug-
gested by in silico prediction, we used transient expression in 
N. benthamiana, as developed to study the function of SL biosyn-
thetic enzymes (Zhang et al., 2014). Arabidopsis MAX1-WT, 
MAX1-G469R, and MAX1-G469A were transiently ex-
pressed with the upstream enzyme-encoding genes of the CL 
biosynthetic pathway (AtD27, AtMAX3, and AtMAX4), then 
the substrate (CL) and product (CLA) of MAX1 were meas-
ured. As expected, transient expression of AtD27, AtMAX3, 
and AtMAX4 resulted in the production of CL and not CLA 
(Fig. 4A). When co-expressed with MAX1-WT (either the 
Ler-0 or Col-0 version) or MAX1-G469A, CL was signifi-
cantly reduced and some CLA was detected. However, when 
co-expressed with MAX1-G469R, the amount of CL did not 

decrease although CLA was produced in similar amounts to 
that produced by MAX1-WT (Fig. 4A). The lack of a decrease 
in CL suggested that MAX1-G469R had reduced enzymatic 
activity. We considered that the absence of a difference in CLA 
production in the different treatments was likely to be caused 
by conjugation (e.g. glycosylation) of CLA by endogenous 
N. benthamiana enzymes, since we had observed this several 
times previously in N. benthamiana (e.g. in the transient pro-
duction of geranic acid that was glycosylated with one or two 
hexoses; Dong et al., 2013). If CLA conjugation occurs effi-
ciently, the amounts of free CLA would remain low and not 
reflect the rate of conversion of CL to CLA. Thus, we inves-
tigated whether N. benthamiana leaves expressing MAX1-WT 
accumulated CLA conjugates using LC-qTOF-MS analysis. 
Indeed, N.  benthamiana leaves expressing the CL pathway 
genes together with MAX1-WT accumulated CLA–dihexose 
and CLA–hexose conjugates (Fig. 4B; Supplementary Fig. 
S8). When MAX1-G469A was substituted for MAX1-WT, 
conjugate formation was not significantly different from that 
in the pathway with MAX1-WT (Fig. 4B; Supplementary 
Fig. S8). However, when MAX1-G469R was substituted for 
MAX1-WT, conjugate production decreased 36- and 15-fold, 
respectively. To confirm that the G469R mutation was af-
fecting enzyme activity rather than exerting its effect through 
transcriptional changes, mRNA abundance of MAX1-WT 
and MAX1-G469R was analysed. There was no difference in 

Fig. 4. Analysis of CL, CLA, and CLA conjugates in N. benthamiana leaves infiltrated with strigolactone biosynthetic gene constructs. (A) CL and CLA 
content in N. benthamiana transiently expressing MAX1 (Col/Ler-WT or with nucleotide changes resulting in G469R or G469A substitutions) plus three 
CL pathway genes (AtD27, AtMAX3, and AtMAX4). Data are the mean ±SE (n=6). (B) Identification of CLA conjugates in N. benthamiana transiently 
expressing MAX1-Ler/G469R/G469A plus CL pathway genes. Data are the mean ±SE (n=3). Relative quantification based on mass intensity. EV, empty 
vector (control). Letters represent significant differences among different gene combinations for the infiltration for each compound comparison in one-way 
ANOVA. Upper and lower case were used to distinguish the difference for each compound in (A) and (B). Means for the same compound with the same 
letter are not significantly different (5% least significant difference comparisons made on log-transformed data).
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expression between MAX1-WT and MAX1-G469R when 
they were expressed in N. benthamiana (Supplementary Fig. 
S9). Thus, we concluded that the lack of CL conversion and 
reduced CLA conjugate production in N. benthamiana upon 
co-infiltration of the CL pathway with MAX1-G469R was 
caused by reduced activity of the MAX1-G469R enzyme.

SL biosynthetic and response genes are up-regulated 
by 24 h of dark incubation in inflorescences

The SL biosynthetic pathway is thought to be induced by sen-
escence signalling (Ueda and Kusaba, 2015). To test this, we 
used nCounter technology to compare the timing of transcrip-
tional changes in selected senescence marker and SL pathway 
genes in excised WT inflorescences every 24 h over a period 
of 3 d of dark treatment.

The transcript abundance of early stage senescence markers, 
namely ANAC092 and the Chl degradation gene SGR1 (Park 
et  al., 2007), significantly increased at 24  h (Fig. 5A), sug-
gesting senescence in the inflorescences had already initiated 
by this time. Increased transcript abundance of the late stage 
senescence-specific marker gene SAG12 at 48 h indicated that 
at 2 d of dark incubation senescence was well advanced.

The transcript abundance changes of three SL biosyn-
thetic genes, MAX1, MAX3, and MAX4, was used to estimate 
when SL biosynthesis was initiating in the dark-held inflor-
escences. MAX1 transcript abundance did not significantly 
change during the first 24 h of dark treatment, but then sig-
nificantly and substantially increased to be highest at 72 h (Fig. 
5B). MAX3 transcript abundance was slightly increased at 24 h, 
suggesting that SL production in the tissue was just starting. 
From 24  h onwards, MAX3 transcript abundance increased 
in concert with both early senescence markers SGR1 and 
ANAC092. RT-qPCR analysis of MAX4 revealed a pattern of 
transcript accumulation that was very similar to that of MAX3, 
suggesting co-regulation and the beginning of SL synthesis by 
24 h (Supplementary Fig. S10A).

We examined changes in the transcript abundance of the 
SL signalling genes AtD14, SMXL6, SMXL7, and SMXL8. 
Transcript abundance of the first three genes increased sig-
nificantly at 24  h of dark treatment (Fig. 5C, D), whereas 
SMXL8 transcript abundance decreased to be undetectable at 
24 h (Fig. 5D). The nCounter results for MAX3, SMXL6/8, 
ANAC092, and SAG12 were confirmed by RT-qPCR analysis 
(Supplementary Fig. S10). Overall, the results from the transcript 
profiling of the inflorescence suggested that, by 24 h of dark 
incubation, SL biosynthesis has been initiated, SL signalling is 
occurring, and senescence has started. Thus, earlier time points 
were investigated to determine the order of pathway activation.

SL signalling, but not biosynthetic, genes respond 
rapidly to the light–dark transition

At 24 h of darkness, the inflorescence tissue had been exposed 
to 8 h of regular and 16 h of extended night. Holding tissue 

in extended darkness leads to acute carbon starvation caused 
by exhaustion of starch reserves (Usadel et al., 2008) that can 
lead to precocious senescence. To test whether SL biosynthesis 
and response were associated with carbon deprivation-based 
signalling, we compared the timing of expression of transcrip-
tional markers of tissue carbon status (SnRK1-related genes 
AKINβ1 and bZIP63) (Bläsing et al., 2005; Usadel et al., 2008; 
Li et  al., 2009; Mair et  al., 2015) with that of SL-associated 
genes in both the regular and the early extended night.

In Ler-0 controls during the first 6 h into the regular night, 
transcript abundance of AKINβ1 and bZIP63 increased in the 
detached WT inflorescences held in the dark (Fig. 6A) con-
sistent with the genes being markers of reduced carbohydrate 
status. Key senescence-regulatory genes ANAC092 (Kim et al., 
2009) and AtNAP (Guo and Gan, 2006) were up-regulated at 
3 h (Fig. 6B) probably because of their known induction by re-
duced sugar status (Bläsing et al., 2005; Usadel et al., 2008) and/
or the circadian clock (H. Kim et al., 2018; Song et al., 2018). 
There was no increase in transcript abundance of MAX1 6 h 
into the regular night, and MAX3 transcripts were not detected 
at this time (Fig. 6C). Transcript abundance of SMXL7 also did 
not change during the regular night (Fig. 6D). However, at 
3 h into the dark period, SMXL6 and SMXL8 were up- and 
down-regulated, respectively (Fig. 6D).

In order to determine the effect of SL on the expres-
sion of the above genes, we treated the inflorescences with 
rac-GR24. Rac-GR24 is a racemic mixture of two enantio-
mers, GR245DS a synthetic canonical SL, and GR24ent-5DS 
that induces karrikin (KAR) signalling (Kramna et  al., 
2019). However, GR24ent-5DS is probably not relevant for 
the dark-induced degreening phenotype since defects in 
KARRIKIN INSENSITIVE 2 (KAI2), a KAR-specific re-
ceptor, do not delay dark-induced leaf senescence (Ueda 
and Kusaba, 2015). In the mock-treated max1-5/dis15 mu-
tant, the two MAX and three SMXL genes exhibited similar 
expression patterns to that of the WT, although their abun-
dance was lower (Fig. 6C, D). The reduced expression of 
the three SMXL genes was reversed when the mutant was 
treated with 5 µM rac-GR24 for 3 h (Fig. 6D). Intriguingly, 
AtNAP was up-regulated by rac-GR24 at 3 h of treatment 
(Fig. 6B), suggesting that it is also an SL-inducible gene. 
Thus, based on transcription, the increased transcript abun-
dance of sugar-related genes did not induce expression of 
SL biosynthetic genes in the WT inflorescences during 
the normal night. In the max1-5/dis15 mutant, both SL 
signalling genes and AtNAP respond rapidly to rac-GR24 
treatment, indicating that these genes were SL inducible.

GR24 induces the transcript abundance of 
senescence-related genes in max1-5/dis15 during an 
extended night

We next determined the effect of extended darkness (i.e. 
darkness that surpassed the anticipated night period) on 
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carbon status markers, senescence markers, and SL biosyn-
thesis and signalling genes. In the WT, at 4  h of extended 
night (i.e. 12 h of dark treatment), transcript abundance of 
AKINβ1 and bZIP63 was substantially increased (Fig. 7A). 
This was consistent with the WT inflorescences experiencing 
carbon starvation, as has been reported for rosette leaves ex-
posed to a 4 h extended night (Usadel et al., 2008). Transcript 
abundance of ANAC092 and AtNAP was also significantly 
increased at this time (Fig. 7B). However, in Ler controls, 
transcript abundance of MAX1 was not increased by the 4 h 
night extension, and MAX3 abundance remained undetect-
able, suggesting that SL biosynthesis was still not occurring. 
By 10 h of extended night (18 h of dark treatment), MAX1 

transcript abundance had still not changed, but that of MAX3 
had increased, suggesting that SL biosynthesis had started 
(Fig. 7C). The three SMXL genes were differentially ex-
pressed during the extended night (Fig. 7D). SMXL8 tran-
script counts were almost undetectable at both 12 h and 18 h; 
SMXL6 transcript abundance was increased at 12 h but then 
declined; and SMXL7 started to increase at 18 h in a pattern 
similar to MAX3.

We then determined how the patterns of expression of the 
above genes were affected by SL deficiency by examining their 
transcript accumulation in the max1-5/dis15 mutant. Overall, 
in the mock-treated max1-5/dis15 mutant, the patterns of ac-
cumulation of carbon status-related genes, senescence marker 

Fig. 5. Dark-induced transcript abundance changes of strigolactone pathway and senescence-related genes. (A) Chlorophyll (Chl) degradation and 
senescence marker genes. (B) SL biosynthetic genes. (C) SL receptor. (D) SL signalling genes. Transcript abundance was quantified using nCounter 
technology on RNA isolated from detached WT inflorescences (n=3 samples, >4 inflorescences from independent plants per sample) that were incubated 
in the dark for 0, 24, 48, and 72 h. Transcript abundance was normalized to the geometric mean of PP2AA3, ACT2, and MON1. Data are the mean 
±SE. Letters represent significant differences among four time points for each gene comparison in one-way ANOVA (Fisher’s protected LSD test P<0.05). 
Upper and lower case letters were used to distinguish the comparisons for each gene. Upper case letters in (A) represented comparisons for both 
ANAC092 and SGR1.
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genes, and SL biosynthesis and signalling genes in the mutant 
were very similar to that seen in the WT over the 10 h ex-
tended night (Fig. 7), suggesting that their pattern of regula-
tion was not controlled by SL. Interestingly, when the mutant 
was treated with rac-GR24, the transcript abundance of sugar-
related genes AKINβ1 and bZIP63 was suppressed significantly 
at 12 h but not at 18 h (Fig. 7A). In contrast, the transcript 
abundance of the two senescence-related genes ANAC092 
and AtNAP was elevated at 12 h (4 h of extended night) by 
rac-GR24, and so was MAX1 (Fig. 7B, C). All three SMXL 
genes were up-regulated by rac-GR24 at both time points (Fig. 
7D), as observed during the regular night.

Taken together, the nCounter profiling study has high-
lighted a temporal sequence of events whereby markers of 

carbon deprivation and senescence regulation first increased, 
followed within hours by markers for SL production. Further, 
GR24 treatment of the max1-5/dis15 mutant indicated that SL 
acts to promote transcription of senescence-controlling genes 
and to suppress transcription of SnRK1-related genes.

Discussion

Mutations in SL biosynthesis and receptor proteins 
define functionally important amino acids

The finding with an EMS screen of two independent muta-
tions in the SL pathway that significantly affected sepal senes-
cence progression emphasizes the importance of this hormone 

Fig. 6. Transcript abundance of strigolactone pathway genes during regular night. (A) SnRK1-related genes. (B) Functional senescence regulators. (C) SL 
biosynthetic genes. (D) SL signalling genes. Transcript abundance was quantified using nCounter analysis on RNA isolated from detached WT or max1-
5/dis15 inflorescences (n=3 samples, >4 inflorescences from independent plants per sample) that were treated with 1% DMSO or 1% DMSO containing 
5 μM rac-GR24 as indicated, then incubated in the dark for 0, 3, and 6 h. Transcript abundance was normalized to the geometric mean of PP2AA3, 
ACT2, and MON1. Data are the mean ±SE. Different letters indicate statistical difference (P=0.05).
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in the floral death process in addition to its more explored roles 
in plant development (Gomez-Roldan et al., 2008; Umehara 
et  al., 2008; Kapulnik et  al., 2011; Ruyter-Spira et  al., 2011; 
Rasmussen et al., 2012; Toh et al., 2012).

MAX1 encodes a CYP711A1 protein of the cytochrome 
P450 superfamily (Booker et  al., 2005). The MAX1-G469R 
substitution occurred at the last residue in the highly conserved 
Cys haem–iron ligand signature, which is just two amino acids 
C-terminal to the absolutely conserved Cys at position 467. To 
date, no crystal structure of MAX1 has been reported. However, 
a 3D model based on the closest homologous structure, the 

human microsomal P450 CYP3A4, revealed that Gly469 packs 
against the haem cofactor in the binding pocket and is close to 
the haem–iron ligand Cys467 (Fig. 3D). The G469R substitu-
tion presumably causes loss of function by disrupting the steric 
structure of this pocket because there is not enough space to 
accommodate Arg, which has one of the largest side chains, 
compared with Gly that has the smallest.

The G469 residue is invariant in MAX1 orthologues and 
its closely related proteins in Metazoa, Bacteria, and Archaea 
(Fig. 3C; Supplementary Fig. S7; Challis et al., 2013), whereas 
in the wider cytochrome P450 family in rare instances this 

Fig. 7. Transcript abundance of sugar, senescence, and strigolactone pathway genes during an extended night. (A) SnRK1-related genes. (B) Functional 
senescence regulators. (C) SL biosynthetic genes. (D) SL signalling genes. Transcript abundance of each gene was quantified using nCounter technology 
on RNA isolated from detached WT or max1-5/dis15 inflorescences (n=3 samples, >4 inflorescences from independent plants per sample) that were 
treated with 1% DMSO or 1% DMSO containing 5 μM rac-GR24 as indicated, and incubated in the dark for 0, 12, and 18 h. The normal night is 
considered as 8 h. Transcript abundance was normalized to the geometric mean of PP2AA3, ACT2, and MON1. Data are the mean ±SE.
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residue is replaced by Ala. Our transient expression assay in 
N. benthamiana, and successful genetic complementation of the 
max1-5/dis15 mutant with MAX1-G469A (Supplementary 
Fig. S6) demonstrated that the Ala substitution did not reduce 
MAX1 function, suggesting that this small non-polar amino 
acid does not introduce steric clashes in the wider family of 
cytochrome P450 proteins either. This is consistent with the 
equivalent Gly to Ala substitution not affecting activity of 
the Arabidopsis cytochrome P450 CYP83B1, a modulator of 
auxin homeostasis (Barlier et al., 2000; Bak et al., 2001). The 
high content of CL and strongly reduced production of CLA 
hexose conjugates in the leaves infiltrated with the MAX1-
G469R construct are consistent with accumulation of CL pre-
viously observed for the Arabidopsis T-DNA insertion mutant 
max1-4 (Seto et al., 2014), which indicates that conversion of 
the MAX1 substrate is inhibited. Thus, G469 is an important 
amino acid for MAX1 function, though it can be replaced 
by Ala.

The crystal structures of AtD14 and its orthologues in pe-
tunia (PhDAD2) and rice (OsD14) show that they have a 
hydrophobic substrate-binding pocket containing a Ser–His–
Asp catalytic triad essential for hydrolase activity (Hamiaux 
et al., 2012; Kagiyama et al., 2013; Zhao et al., 2013). Unlike 
the classical hormone receptors that non-covalently and re-
versibly bind to hormone molecules, the crystal structure 
of the SL-induced AtD14–D3–ASK1 complex reveals that 
AtD14 binds to SL and hydrolyses it into a CLIM (Yao et al., 
2016). It is under debate whether this hydrolysis is required for 
signalling to occur (Seto et  al., 2019). Experiments with the 
F-box protein D3, a rice orthologue of Arabidopsis MAX2, 
showed that SL triggers signalling by enabling AtD14 to bind 
to MAX2 to recruit repressors (e.g. Arabidopsis SMXL6/7/8) 
for degradation through the 26S proteasome (Jiang et al., 2013; 
Zhou et al., 2013; Wang et al., 2015). In the d14-6/dis9 mu-
tant, Ser97 in the catalytic triad was replaced by Phe. This pro-
duced phenotypes similar to the null mutant d14-1, suggesting 
loss of activity of D14 (Waters et al., 2012; Ueda and Kusaba, 
2015). It is also consistent with mutation of this residue to an-
other non-nucleophilic residue, Ala (atd14:S97A), abolishing 
hydrolase activity in vitro of the expressed protein (Abe et al., 
2014). Thus, it is probable that the in planta S97F mutation we 
identified causes complete loss of D14 activity by affecting its 
hydrolase activity.

SLs regulate dark-induced inflorescence senescence 
in association with a change of carbon status during 
extended night

Our results indicated that SLs hastened Arabidopsis sepal sen-
escence in planta and under energy deprivation conditions. 
Previously we showed that dark treatment of detached inflor-
escences was associated with reduced soluble sugar content and 
transcriptional changes of sugar-related genes (Trivellini et al., 
2012). Thus, it was plausible that SLs would interact with sugar 

signalling to control dark-induced inflorescence senescence, 
which would be consistent with reports of crosstalk between 
SLs and sugar regulation of shoot branching and seedling es-
tablishment in Arabidopsis (Li et al., 2016; Otori et al., 2017), 
and the finding that SL-induced senescence of bamboo leaves 
is suppressed by exogenous sugar treatment (Tian et al., 2018).

SL and sugar interaction during normal night

In the inflorescences, genes that control sugar-dependent tran-
scriptional response (Bläsing et al., 2005; Baena-González et al., 
2007; Usadel et  al., 2008), namely the SnRK1-related genes 
AKINβ1 (a subunit of SnRK1) (Li et al., 2009) and bZIP63 
(one of the direct targets of SnRK1) (Mair et al., 2015), were 
up-regulated during the regular night, consistent with sugar 
status reducing as the night progressed. To determine whether 
this normal diurnal reduction in sugar content was associated 
with changes in SL content, we used the approach of Li et al. 
(2018) and measured transcript abundance changes of the SL 
biosynthetic genes because of the difficulty in measuring SLs 
in Arabidopsis (Seto et al., 2014; Lv et al., 2018), although we 
acknowledge that the involvement of post-transcriptional fac-
tors cannot be discounted. SLs did not appear to be synthesized 
in response to the sugar decline, since MAX1 abundance was 
unchanged and MAX3 counts were below the threshold for 
detection (Fig. 6A).

Mashiguchi et al. (2009) and Brewer et al. (2016) had sug-
gested that such an interpretation could be confounded by SL 
negative feedback on SL biosynthetic genes. However, we did 
not find evidence for SL negative feedback since: (i) transcript 
abundance of the SL biosynthetic genes was not higher in the 
max1-5/dis15 mutant and Ler-0 WT; and (ii) treatment of the 
inflorescences with the SL analogue did not suppress their ex-
pression. This absence of negative feedback agrees with the 
findings of Bainbridge et al. (2005) on MAX4.

SL and sugar interaction during extended night

The extended night commences when the regular night ends. In 
Arabidopsis rosettes, a 4 h extended night leads to acute carbon 
deprivation and transcriptional reprogramming by SnRK1s 
(Baena-González et al., 2007; Usadel et al., 2008). Consistent with 
this, we found that AKINββ1 and bZIP63 transcripts increased 
to their highest abundance in both the WT and max1-5/dis15 
at 12  h (4  h into extended night) (Fig. 7). Transcripts of the 
senescence-regulating genes ANAC092 and NAP continued to 
increase at 18 h and this corresponded to the time when MAX3 
and SMXL7 started to increase. We used SMXL6, SMXL7, and 
SMXL8 to determine SL response because the delayed senes-
cence phenotype in both mutants was tightly linked to altered 
branching and these SMXL genes are functionally redundant in 
controlling Arabidopsis shoot branching (Soundappan et al., 2015; 
Wang et al., 2015). The expression pattern of SMXL7 correlated 
best with the SL biosynthetic genes and senescence marker genes. 
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SMXL7 also has higher transcript abundance than SMXL6 and 
SMXL8 in senescent leaves (Stanga et al., 2013), which suggests 
that this SMXL may have a more important role in senescence 
than the others.

In summary, two novel mutants have highlighted a connec-
tion between the SL pathway and floral organ senescence in 
planta, and in response to carbon limiting conditions. Our ana-
lyses indicated an intricate relationship among sugar starvation, 

senescence, and SL biosynthesis and signalling in excised 
dark-held inflorescences. Here we propose a model (Fig. 8) in 
which sugar shortage resulting from prolonged darkness trig-
gers senescence initiation and progression in the inflorescence, 
and this associates with transcriptional changes of senescence-
related transcription factor genes such as NAP and ANAC092 
(Trivellini et al., 2012). SLs may not have a major role in the 
inflorescence during the normal night but are synthesized 
during the extended night, perhaps in response to sustained 
low sugar content and consequent senescence initiation. Then 
SLs play an important role in promoting senescence progres-
sion, perhaps by activation of key senescence regulators.
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