50 research outputs found

    Reading strategy for the MBA: informing effective use of learner time for critical reading.

    Get PDF
    This paper is motivated by the development of a reading strategy for the MBA at RGU. It provides an overview of current views on the importance of reading to inform significant learner hours on directed and self-directed study and quantifies the extent of reading on the course, providing a leaner perspective on the scope and scale of reading across modules. Exploration of learner motivation for reading and learner engagement with reading at this postgraduate level is used to establish the essence of a reading strategy. We argue that an important role for educators and the wider educational system experienced by the learner both recognises and positively supports learners as active readers. The opportunity for academic staff to assist learners with their engagement in their reading activity and to identify mechanisms to purposively link these actions to pedagogical principles is set out

    Conservation laws in the continuum 1/r21/r^2 systems

    Full text link
    We study the conservation laws of both the classical and the quantum mechanical continuum 1/r21/r^2 type systems. For the classical case, we introduce new integrals of motion along the recent ideas of Shastry and Sutherland (SS), supplementing the usual integrals of motion constructed much earlier by Moser. We show by explicit construction that one set of integrals can be related algebraically to the other. The difference of these two sets of integrals then gives rise to yet another complete set of integrals of motion. For the quantum case, we first need to resum the integrals proposed by Calogero, Marchioro and Ragnisco. We give a diagrammatic construction scheme for these new integrals, which are the quantum analogues of the classical traces. Again we show that there is a relationship between these new integrals and the quantum integrals of SS by explicit construction.Comment: 19 RevTeX 3.0 pages with 2 PS-figures include

    GAPS IN THE HEISENBERG-ISING MODEL

    Full text link
    We report on the closing of gaps in the ground state of the critical Heisenberg-Ising chain at momentum π\pi. For half-filling, the gap closes at special values of the anisotropy Δ=cos(π/Q)\Delta= \cos(\pi/Q), QQ integer. We explain this behavior with the help of the Bethe Ansatz and show that the gap scales as a power of the system size with variable exponent depending on Δ\Delta. We use a finite-size analysis to calculate this exponent in the critical region, supplemented by perturbation theory at Δ0\Delta\sim 0. For rational 1/r1/r fillings, the gap is shown to be closed for {\em all} values of Δ\Delta and the corresponding perturbation expansion in Δ\Delta shows a remarkable cancellation of various diagrams.Comment: 12 RevTeX pages + 4 figures upon reques

    Transport Properties of a One-Dimensional Two-Component Quantum Liquid with Hyperbolic Interactions

    Full text link
    We present an investigation of the sinh-cosh (SC) interaction model with twisted boundary conditions. We argue that, when unlike particles repel, the SC model may be usefully viewed as a Heisenberg-Ising fluid with moving Heisenberg-Ising spins. We derive the Luttinger liquid relation for the stiffness and the susceptibility, both from conformal arguments, and directly from the integral equations. Finally, we investigate the opening and closing of the ground state gaps for both SC and Heisenberg-Ising models, as the interaction strength is varied.Comment: 10 REVTeX pages + 4 uuencoded figures, UoU-002029

    Strongly Interacting Luttinger Liquid and Superconductivity in an Exactly Solvable Model

    Full text link
    A new family of exactly solvable one dimensional models with a hard-core repulsive potential is solved by the Bethe Ansatz for an arbitrary hard-core radius. The exact ground state phase diagrams in a plane 'electron density - on-site interaction' have been studied for several values of a hard-core radius. It is shown that superconducting phase and strongly interacting Luttinger liquid state are coexisted at a high electron density and unusually high value of repulsive on-site Coulomb interaction.Comment: 4 pages, 2 figures, RevTe

    Deficiency of Pkc1 activity affects glycerol metabolism in Saccharomyces cerevisiae

    Get PDF
    In pressProtein kinase C is apparently involved in the control of many cellular systems: the cell wall integrity pathway, the synthesis of ribosomes, the appropriated reallocation of transcription factors under specific stress conditions and also the regulation of N-glycosylation activity. All these observations suggest the existence of additional targets not yet identified. In the context of the control of carbon metabolism, previous data demonstrated that Pkc1 p might play a central role in the control of cellular growth and metabolism in yeast. In particular, it has been suggested that it might be involved in the derepression of genes under glucose-repression by driving an appropriated subcellular localization of transcriptional factors, such as Mig1 p. In this work, we show that pkc1∆ mutant is unable to grow on glycerol because it cannot perform the derepression of GUT1 gene that encodes for glycerol kinase. Additionally, active transport is also partially affected. Using this phenotype, we were able to isolate a new pkc1∆ revertant. We also isolated two transformants identified as the nuclear exportin Msn5 and the histone deacetylase Hos2 extragenic suppressors of this mutation. Based on these results, we postulate that Pkc1 p may be involved in the control of the cellular localization and/or regulation of the activity of nuclear proteins implicated in gene expression.Fundação Universidade Federal de Ouro Preto (FUFOP). Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) - CBS-1875/95. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) - 300998/89-9 to R.L.B., 301255/01-6 to L.G.F

    Automatically Harnessing Sparse Acceleration

    Get PDF
    Sparse linear algebra is central to many scientific programs, yet compilers fail to optimize it well. High-performance libraries are available, but adoption costs are significant. Moreover, libraries tie programs into vendor-specific software and hardware ecosystems, creating non-portable code. In this paper, we develop a new approach based on our specification Language for implementers of Linear Algebra Computations (LiLAC). Rather than requiring the application developer to (re)write every program for a given library, the burden is shifted to a one-off description by the library implementer. The LiLAC-enabled compiler uses this to insert appropriate library routines without source code changes. LiLAC provides automatic data marshaling, maintaining state between calls and minimizing data transfers. Appropriate places for library insertion are detected in compiler intermediate representation, independent of source languages. We evaluated on large-scale scientific applications written in FORTRAN; standard C/C++ and FORTRAN benchmarks; and C++ graph analytics kernels. Across heterogeneous platforms, applications and data sets we show speedups of 1.1×\times to over 10×\times without user intervention.Comment: Accepted to CC 202
    corecore