96 research outputs found

    Resonant X-Ray Scattering Measurements of a Spatial Modulation of the Cu 3d and O 2p Energies in Stripe-Ordered Cuprate Superconductors

    Full text link
    A prevailing description of the stripe phase in underdoped cuprate superconductors is that the charge carriers (holes) phase segregate on a microscopic scale into hole rich and hole poor regions. We report resonant elastic x-ray scattering measurements of stripe-ordered La1.475_{1.475}Nd0.4_{0.4}Sr0.125_{0.125}CuO4_4 at the Cu LL and O KK absorption edges that identify an additional feature of stripe order. Analysis of the energy dependence of the scattering intensity reveals that the dominant signature of the stripe order is a spatial modulation in the energies of Cu 3d and O 2p states rather than the large modulation of the charge density (valence) envisioned in the common stripe paradigm. These energy shifts are interpreted as a spatial modulation of the electronic structure and may point to a valence-bond-solid interpretation of the stripe phase.Comment: 5 pages, 2 figure

    Electronic depth profiles with atomic layer resolution from resonant soft x-ray reflectivity

    Get PDF
    The analysis of x-ray reflectivity data from artificial heterostructures usually relies on the homogeneity of optical properties of the constituent materials. However, when the x-ray energy is tuned to an absorption edge, this homogeneity no longer exists. Within the same material, spatial regions containing elements at resonance will have optical properties very different from regions without resonating sites. In this situation, models assuming homogeneous optical properties throughout the material can fail to describe the reflectivity adequately. As we show here, resonant soft x-ray reflectivity is sensitive to these variations, even though the wavelength is typically large as compared to the atomic distances over which the optical properties vary. We have therefore developed a scheme for analyzing resonant soft x-ray reflectivity data, which takes the atomic structure of a material into account by "slicing" it into atomic planes with characteristic optical properties. Using LaSrMnO4 as an example, we discuss both the theoretical and experimental implications of this approach. Our analysis not only allows to determine important structural information such as interface terminations and stacking of atomic layers, but also enables to extract depth-resolved spectroscopic information with atomic resolution, thus enhancing the capability of the technique to study emergent phenomena at surfaces and interfaces.Comment: Completely overhauled with respect to the previous version due to peer revie

    Soft x-ray magnetic circular dichroism study on Gd-doped EuO thin films

    Full text link
    We report on the growth and characterization of ferromagnetic Gd-doped EuO thin films. We prepared samples with Gd concentrations up to 11% by means of molecular beam epitaxy under distillation conditions, which allows a very precise control of the doping concentration and oxygen stoichiometry. Using soft x-ray magnetic circular dichroism at the Eu and Gd M4,5 edges, we found that the Curie temperature ranged from 69 K for pure stoichiometric EuO to about 170 K for the film with the optimal Gd doping of around 4%. We also show that the Gd magnetic moment couples ferromagnetically to that of Eu.Comment: 4 pages, 4 figure

    Intrinsic and extrinsic x-ray absorption effects in soft x-ray diffraction from the superstructure in magnetite

    Full text link
    We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved single crystals. From the comparison we have been able to determine quantitatively the contribution of intrinsic absorption effects, thereby arriving at a consistent result for the (001/2) diffraction peak spectrum. Our data also allow for the identification of extrinsic effects, e.g. for a detailed modeling of the spectra in case a "dead" surface layer is present that is only absorbing photons but does not contribute to the scattering signal.Comment: to appear in Phys. Rev.
    • …
    corecore