196 research outputs found

    High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A

    Get PDF
    Methylglyoxal is a highly reactive dicarbonyl degradation product formed from triose phosphates during glycolysis. Methylglyoxal forms stable adducts primarily with arginine residues of intracellular proteins. The biologic role of this covalent modification in regulating cell function is not known. Here we report that in mouse kidney endothelial cells, high glucose causes increased methylglyoxal modification of the corepressor mSin3A. Methylglyoxal modification of mSin3A results in increased recruitment of O-GlcNAc-transferase, with consequent increased modification of Sp3 by O-linked N-acetylglucosamine. This modification of Sp3 causes decreased binding to a glucose-responsive GC-box in the angiopoietin-2 (Ang-2) promoter, resulting in increased Ang-2 expression. Increased Ang-2 expression induced by high glucose increased expression of intracellular adhesion molecule 1 and vascular cell adhesion molecule 1 in cells and in kidneys from diabetic mice and sensitized microvascular endothelial cells to the proinflammatory effects of tumor necrosis factor alpha. This novel mechanism for regulating gene expression may play a role in the pathobiology of diabetic vascular disease

    Epigenetic Silencing of Spermatocyte-Specific and Neuronal Genes by SUMO Modification of the Transcription Factor Sp3

    Get PDF
    SUMO modification of transcription factors is linked to repression of transcription. The physiological significance of SUMO attachment to a particular transcriptional regulator, however, is largely unknown. We have employed the ubiquitously expressed murine transcription factor Sp3 to analyze the role of SUMOylation in vivo. We generated mice and mouse embryonic fibroblasts (MEFs) carrying a subtle point mutation in the SUMO attachment sequence of Sp3 (IKEE553D mutation). The E553D mutation impedes SUMOylation of Sp3 at K551 in vivo, without affecting Sp3 protein levels. Expression profiling revealed that spermatocyte-specific genes, such as Dmc1 and Dnahc8, and neuronal genes, including Paqr6, Rims3, and Robo3, are de-repressed in non-testicular and extra-neuronal mouse tissues and in mouse embryonic fibroblasts expressing the SUMOylation-deficient Sp3E553D mutant protein. Chromatin immunoprecipitation experiments show that transcriptional de-repression of these genes is accompanied by the loss of repressive heterochromatic marks such as H3K9 and H4K20 tri-methylation and impaired recruitment of repressive chromatin-modifying enzymes. Finally, analysis of the DNA methylation state of the Dmc1, Paqr6, and Rims3 promoters by bisulfite sequencing revealed that these genes are highly methylated in Sp3wt MEFs but are unmethylated in Sp3E553D MEFs linking SUMOylation of Sp3 to tissue-specific CpG methylation. Our results establish SUMO conjugation to Sp3 as a molecular beacon for the assembly of repression machineries to maintain tissue-specific transcriptional gene silencing

    Specificity protein 2 (Sp2) is essential for mouse development and autonomous proliferation of mouse embryonic fibroblasts

    Get PDF
    Background: The zinc finger protein Sp2 (specificity protein 2) is a member of the glutamine-rich Sp family of transcription factors. Despite its close similarity to Sp1, Sp3 and Sp4, Sp2 does not bind to DNA or activate transcription when expressed in mammalian cell lines. The expression pattern and the biological relevance of Sp2 in the mouse are unknown. Methodology/Principal Findings: Whole-mount in situ hybridization of mouse embryos between E7.5 and E9.5 revealed abundant expression in most embryonic and extra-embryonic tissues. In order to unravel the biological relevance of Sp2, we have targeted the Sp2 gene by a tri-loxP strategy. Constitutive Sp2null and conditional Sp2cko knockout alleles were obtained by crossings with appropriate Cre recombinase expressing mice. Constitutive disruption of the mouse Sp2 gene (Sp2null) resulted in severe growth retardation and lethality before E9.5. Mouse embryonic fibroblasts (MEFs) derived from Sp2null embryos at E9.5 failed to grow. Cre-mediated ablation of Sp2 in Sp2cko/cko MEFs obtained from E13.5 strongly impaired cell proliferation. Conclusions/Significance: Our results demonstrate that Sp2 is essential for early mouse development and autonomous proliferation of MEFs in culture. Comparison of the Sp2 knockout phenotype with th

    Transcriptional control of the multi-drug transporter ABCB1 by transcription factor Sp3 in different human tissues

    Get PDF
    The ATP-binding cassette (ABC) transporter ABCB1, encoded by the multidrug resistance gene MDR1, is expressed on brain microvascular endothelium and several types of epithelium, but not on endothelia outside the CNS. It is an essential component of the blood-brain barrier. The aim of this study was to identify cell-specific controls on the transcription of MDR1 in human brain endothelium. Reporter assays identified a region of 500bp around the transcription start site that was optimally active in brain endothelium. Chromatin immunoprecipitation identified Sp3 and TFIID associated with this region and EMSA (electrophoretic mobility shift assays) confirmed that Sp3 binds preferentially to an Sp-target site (GC-box) on the MDR1 promoter in brain endothelium. This result contrasts with findings in other cell types and with the colon carcinoma line Caco-2, in which Sp1 preferentially associates with the MDR1 promoter. Differences in MDR1 transcriptional control between brain endothelium and Caco-2 could not be explained by the relative abundance of Sp1:Sp3 nor by the ratio of Sp3 variants, because activating variants of Sp3 were present in both cell types. However differential binding of other transcription factors was also detected in two additional upstream regions of the MDR1 promoter. Identification of cell-specific controls on the transcription of MDR1 indicates that it may be possible to modulate multi-drug resistance on tumours, while leaving the blood brain barrier intact

    Despite WT1 binding sites in the promoter region of human and mouse nucleoporin glycoprotein 210, WT1 does not influence expression of GP210

    Get PDF
    BACKGROUND: Glycoprotein 210 (GP210) is a transmembrane component of the nuclear pore complex of metazoans, with a short carboxyterminus protruding towards the cytoplasm. Its function is unknown, but it is considered to be a major structural component of metazoan nuclear pores. Yet, our previous findings showed pronounced differences in expression levels in embryonic mouse tissues and cell lines. In order to identify factors regulating GP210, the genomic organization of human GP210 was analyzed in silico. RESULTS: The human gene was mapped to chromosome 3 and consists of 40 exons spread over 102 kb. The deduced 1887 amino acid showed a high degree of alignment homology to previously reported orthologues. Experimentally we defined two transcription initiation sites, 18 and 29 bp upstream of the ATG start codon. The promoter region is characterized by a CpG island and several consensus binding motifs for gene regulatory transcription factors, including clustered sites associated with Sp1 and the Wilms' tumor suppressor gene zinc finger protein (WT1). In addition, distal to the translation start we found a (GT)n repetitive sequence, an element known for its ability to bind WT1. Homologies for these motifs could be identified in the corresponding mouse genomic region. However, experimental tetracycline dependent induction of WT1 in SAOS osteosarcoma cells did not influence GP210 transcription. CONCLUSION: Although mouse GP210 was identified as an early response gene during induced metanephric kidney development, and WT1 binding sites were identified in the promoter region of the human GP210 gene, experimental modulation of WT1 expression did not influence expression of GP210. Therefore, WT1 is probably not regulating GP210 expression. Instead, we suggest that the identified Sp binding sites are involved

    Sp1 Expression Is Disrupted in Schizophrenia; A Possible Mechanism for the Abnormal Expression of Mitochondrial Complex I Genes, NDUFV1 and NDUFV2

    Get PDF
    The prevailing hypothesis regards schizophrenia as a polygenic disease, in which multiple genes combine with each other and with environmental stimuli to produce the variance of its clinical symptoms. We investigated whether the ubiquitous transcription factor Sp1 is abnormally expressed in schizophrenia, and consequently can affect the expression of genes implicated in this disorder. promoter by binding to its three GC-boxes. Both activation and binding were inhibited by mithramycin.These findings suggest that abnormality in Sp1, which can be the main activator/repressor or act in combination with additional transcription factors and is subjected to environmental stimuli, can contribute to the polygenic and clinically heterogeneous nature of schizophrenia

    Aberrant over-expression of a forkhead family member, FOXO1A, in a brain tumor cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mammalian FOXO (forkhead box, O subclass) proteins are a family of pleiotropic transcription factors involved in the regulation of a broad range of cellular processes critical for survival. Despite the essential and diverse roles of the FOXO family members in human cells and their involvement in tumor pathogenesis, the regulation of <it>FOXO </it>expression remains poorly understood. We have addressed the mechanisms underlying the high level of expression of the <it>FOXO1A </it>gene in a cell line, PER-453, derived from a primitive neuroectodermal tumor of the central nervous system (CNS-PNET).</p> <p>Methods</p> <p>The status of the <it>FOXO1A </it>locus in the PER-453 CNS-PNET cell line was investigated by Southern blotting and DNA sequence analysis of the proximal promoter, 5'-UTR, open reading frame and 3'-UTR. FOXO1A expression was assessed by conventional and quantitative RT-PCR, Northern and Western blotting.</p> <p>Results</p> <p>Quantitative real-time RT-PCR (qRT-PCR) data indicated that after normalization to <it>ACTB </it>mRNA levels, canonical <it>FOXO1A </it>mRNA expression in the PER-453 cell line was 124-fold higher than the average level of five other CNS-PNET cell lines tested, 24-fold higher than the level in whole fetal brain, and 3.5-fold higher than the level in fetal brain germinal matrix cells. No mutations within the <it>FOXO1A </it>open reading frame or gross rearrangements of the <it>FOXO1A </it>locus were detected. However, a single nucleotide change within the proximal promoter and several nucleotide changes within the 3'-UTR were identified. In addition, two novel <it>FOXO1A </it>transcripts were isolated that differ from the canonical transcript by alternative splicing within the 3'-UTR.</p> <p>Conclusion</p> <p>The CNS-PNET cell line, PER-453, expresses <it>FOXO1A </it>at very high levels relative to most normal and cancer cells from a broad range of tissues. The <it>FOXO1A </it>open reading frame is wild type in the PER-453 cell line and the abnormally high <it>FOXO1A </it>mRNA expression is not due to mutations affecting the 5'-UTR or proximal promoter. Over expression of <it>FOXO1A </it>may be the result of PER-453 specific epimutations or imbalances in regulatory factors acting at the promoter and/or 3'-UTR.</p

    Human GLI3 Intragenic Conserved Non-Coding Sequences Are Tissue-Specific Enhancers

    Get PDF
    The zinc-finger transcription factor GLI3 is a key regulator of development, acting as a primary transducer of Sonic hedgehog (SHH) signaling in a combinatorial context dependent fashion controlling multiple patterning steps in different tissues/organs. A tight temporal and spatial control of gene expression is indispensable, however, cis-acting sequence elements regulating GLI3 expression have not yet been reported. We show that 11 ancient genomic DNA signatures, conserved from the pufferfish Takifugu (Fugu) rubripes to man, are distributed throughout the introns of human GLI3. They map within larger conserved non-coding elements (CNEs) that are found in the tetrapod lineage. Full length CNEs transiently transfected into human cell cultures acted as cell type specific enhancers of gene transcription. The regulatory potential of these elements is conserved and was exploited to direct tissue specific expression of a reporter gene in zebrafish embryos. Assays of deletion constructs revealed that the human-Fugu conserved sequences within the GLI3 intronic CNEs were essential but not sufficient for full-scale transcriptional activation. The enhancer activity of the CNEs is determined by a combinatorial effect of a core sequence conserved between human and teleosts (Fugu) and flanking tetrapod-specific sequences, suggesting that successive clustering of sequences with regulatory potential around an ancient, highly conserved nucleus might be a possible mechanism for the evolution of cis-acting regulatory elements

    Transcription Factor SP4 Is a Susceptibility Gene for Bipolar Disorder

    Get PDF
    The Sp4 transcription factor plays a critical role for both development and function of mouse hippocampus. Reduced expression of the mouse Sp4 gene results in a variety of behavioral abnormalities relevant to human psychiatric disorders. The human SP4 gene is therefore examined for its association with both bipolar disorder and schizophrenia in European Caucasian and Chinese populations respectively. Out of ten SNPs selected from human SP4 genomic locus, four displayed significant association with bipolar disorder in European Caucasian families (rs12668354, p = 0.022; rs12673091, p = 0.0005; rs3735440, p = 0.019; rs11974306, p = 0.018). To replicate the genetic association, the same set of SNPs was examined in a Chinese bipolar case control sample. Four SNPs displayed significant association (rs40245, p = 0.009; rs12673091, p = 0.002; rs1018954, p = 0.001; rs3735440, p = 0.029), and two of them (rs12673091, rs3735440) were shared with positive SNPs from European Caucasian families. Considering the genetic overlap between bipolar disorder and schizophrenia, we extended our studies in Chinese trios families for schizophrenia. The SNP7 (rs12673091, p = 0.012) also displayed a significant association. The SNP7 (rs12673091) was therefore significantly associated in all three samples, and shared the same susceptibility allele (A) across all three samples. On the other hand, we found a gene dosage effect for mouse Sp4 gene in the modulation of sensorimotor gating, a putative endophenotype for both schizophrenia and bipolar disorder. The deficient sensorimotor gating in Sp4 hypomorphic mice was partially reversed by the administration of dopamine D2 antagonist or mood stabilizers. Both human genetic and mouse pharmacogenetic studies support Sp4 gene as a susceptibility gene for bipolar disorder or schizophrenia. The studies on the role of Sp4 gene in hippocampal development may provide novel insights for the contribution of hippocampal abnormalities in these psychiatric disorders

    Point Mutations in GLI3 Lead to Misregulation of its Subcellular Localization

    Get PDF
    Background Mutations in the transcription factor GLI3, a downstream target of Sonic Hedgehog (SHH) signaling, are responsible for the development of malformation syndromes such as Greig-cephalopolysyndactyly-syndrome (GCPS), or Pallister-Hall-syndrome (PHS). Mutations that lead to loss of function of the protein and to haploinsufficiency cause GCPS, while truncating mutations that result in constitutive repressor function of GLI3 lead to PHS. As an exception, some point mutations in the C-terminal part of GLI3 observed in GCPS patients have so far not been linked to loss of function. We have shown recently that protein phosphatase 2A (PP2A) regulates the nuclear localization and transcriptional activity a of GLI3 function. Principal Findings We have shown recently that protein phosphatase 2A (PP2A) and the ubiquitin ligase MID1 regulate the nuclear localization and transcriptional activity of GLI3. Here we show mapping of the functional interaction between the MID1-α4-PP2A complex and GLI3 to a region between amino acid 568-1100 of GLI3. Furthermore we demonstrate that GCPS-associated point mutations, that are located in that region, lead to misregulation of the nuclear GLI3-localization and transcriptional activity. GLI3 phosphorylation itself however appears independent of its localization and remains untouched by either of the point mutations and by PP2A-activity, which suggests involvement of an as yet unknown GLI3 interaction partner, the phosphorylation status of which is regulated by PP2A activity, in the control of GLI3 subcellular localization and activity. Conclusions The present findings provide an explanation for the pathogenesis of GCPS in patients carrying C-terminal point mutations, and close the gap in our understanding of how GLI3-genotypes give rise to particular phenotypes. Furthermore, they provide a molecular explanation for the phenotypic overlap between Opitz syndrome patients with dysregulated PP2A-activity and syndromes caused by GLI3-mutations
    • …
    corecore