68 research outputs found
Regulatory T Cells Suppress Effector T Cell Proliferation by Limiting Division Destiny
Understanding how the strength of an effector T cell response is regulated is a fundamental problem in immunology with implications for immunity to pathogens, autoimmunity, and immunotherapy. The initial magnitude of the T cell response is determined by the sum of independent signals from antigen, co-stimulation and cytokines. By applying quantitative methods, the contribution of each signal to the number of divisions T cells undergo (division destiny) can be measured, and the resultant exponential increase in response magnitude accurately calculated. CD4+CD25+Foxp3+ regulatory T cells suppress self-reactive T cell responses and limit pathogen-directed immune responses before bystander damage occurs. Using a quantitative modeling framework to measure T cell signal integration and response, we show that Tregs modulate division destiny, rather than directly increasing the rate of death or delaying interdivision times. The quantitative effect of Tregs could be mimicked by modulating the availability of stimulatory co-stimuli and cytokines or through the addition of inhibitory signals. Thus, our analysis illustrates the primary effect of Tregs on the magnitude of effector T cell responses is mediated by modifying division destiny of responding cell populations
Cyton2:A Model of Immune Cell Population Dynamics That Includes Familial Instructional Inheritance
Lymphocytes are the central actors in adaptive immune responses. When challenged with antigen, a small number of B and T cells have a cognate receptor capable of recognising and responding to the insult. These cells proliferate, building an exponentially growing, differentiating clone army to fight off the threat, before ceasing to divide and dying over a period of weeks, leaving in their wake memory cells that are primed to rapidly respond to any repeated infection. Due to the non-linearity of lymphocyte population dynamics, mathematical models are needed to interrogate data from experimental studies. Due to lack of evidence to the contrary and appealing to arguments based on Occam’s Razor, in these models newly born progeny are typically assumed to behave independently of their predecessors. Recent experimental studies, however, challenge that assumption, making clear that there is substantial inheritance of timed fate changes from each cell by its offspring, calling for a revision to the existing mathematical modelling paradigms used for information extraction. By assessing long-term live-cell imaging of stimulated murine B and T cells in vitro, we distilled the key phenomena of these within-family inheritances and used them to develop a new mathematical model, Cyton2, that encapsulates them. We establish the model’s consistency with these newly observed fine-grained features. Two natural concerns for any model that includes familial correlations would be that it is overparameterised or computationally inefficient in data fitting, but neither is the case for Cyton2. We demonstrate Cyton2’s utility by challenging it with high-throughput flow cytometry data, which confirms the robustness of its parameter estimation as well as its ability to extract biological meaning from complex mixed stimulation experiments. Cyton2, therefore, offers an alternate mathematical model, one that is, more aligned to experimental observation, for drawing inferences on lymphocyte population dynamics
An elegant Breadboard of the optical bench for eLISA/NGO
The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10−5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching.
These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels
Progressive Gait Deficits in Parkinson’s Disease: A Wearable-Based Biannual 5-Year Prospective Study
Background: Gait changes occur during all Parkinson’s disease (PD) stages and wearable sensor-derived gait parameters may quantify PD progression. However, key aspects that may qualify quantitative gait parameters as progression markers in PD remain elusive.Objectives: Longitudinal changes in gait parameters from a lower-back sensor under convenient and challenging walking conditions in early- and mid-stage PD patients (E-PD, M-PD) compared to controls were investigated.Methods: Normal- and fast-pace parameters (step: number, time, velocity, variability) were assessed every 6 months for up to 5 years in 22 E-PD (<4 years baseline disease duration), 18 M-PD (>5 years) and 24 controls. Parameter trajectories and associations with MDS-UPDRS-III were tested using generalized estimating equations.Results: Normal-pace step number (annual change in E-PD: 2.1%, Time∗Group: p = 0.001) and step time variability (8.5%, p < 0.05) longitudinally increased in E-PD compared to controls (0.7%, -12%). For fast pace, no significant progression differences between groups were observed. Longitudinal changes in M-PD did not differ significantly from controls. MDS-UPDRS-III was largely associated with normal-pace parameters in M-PD.Conclusion: Wearables can quantify progressive gait deficits indicated by increasing step number and step time variability in E-PD. In M-PD, and for fast-pace, gait parameters possess limited potential as PD progression markers
Dual vs. Single Tasking During Circular Walking: What Better Reflects Progression in Parkinson's Disease?
Background and Aim: Reliable, valid and sensitive measures of dual-task-associated impairments in patients with Parkinson's disease (PD) may reveal progressive deficits unnoticed under single-task walking. The aim of this study was to quantitatively identify markers of progressive gait deficits in idiopathic PD while walking over a circular trajectory condition in single-task walking and in different dual-task conditions: (1) circular walking while checking boxes on a paper sheet as fast as possible and (2) circular walking while performing subtraction of 7 as fast as possible. In addition, we aimed to study the added value of dual-tasking assessment over single (circular) walking task assessment in the study of PD progression.Methods: The assessments were performed every 6 months over a (up to) 5 years period for 22 patients in early-stage PD, 27 patients in middle-stage PD and 25 healthy controls (HC). Longitudinal changes of 27 gait features extracted from accelerometry were compared between PD groups and HCs using generalized estimating equations analysis, accounting for gait speed, age, and levodopa medication state confounders when required. In addition, dual-task-interference with gait and cognitive performance was assessed, as well as their combination.Results: The results support the validity and robustness of some of the gait features already identified in our previous work as progression markers of the disease in single-task circular walking. However, fewer gait features from dual-task than from single-task assessments were identified as markers of progression in PD. Moreover, we did not clearly identify progressive worsening of dual-task-interference in patients with PD, although some group differences between early and middle stages of PD vs. the control group were observed for dual-task interference with the gait task and with the concurrent tasks.Conclusions: Overall, the results showed that dual-tasking did not have added value in the study of PD progression from circular gait assessments. Our analyses suggest that, while single-task walking might be sensitive enough, dual-tasking may introduce additional (error) variance to the data and may represent complex composite measures of cognitive and motor performance
Validation of plasma biomarker candidates for the prediction of eGFR decline in patients with type 2 diabetes
Objective:
The decline of estimated glomerular filtration rate (eGFR) in patients with type 2 diabetes is variable and early interventions would likely be cost effective. We elucidated the contribution of 17 plasma biomarkers to the prediction of eGFR loss on top of clinical risk factors.
Research Design and Methods:
We studied participants in PROVALID, a prospective multinational cohort study of patients with type 2 diabetes and a follow up of more than 24 months (n = 2560; baseline median eGFR 84 mL/min/1.73m2, UACR 8.1 mg/g). The 17 biomarkers were measured at baseline in 481 samples using Luminex technology and ELISA. The prediction of eGFR decline was evaluated by linear mixed modeling.
Results:
In univariable analyses nine of the 17 markers showed significant differences in median concentration between the two groups. A linear mixed model for eGFR obtained by variable selection exhibited an adjusted R2 of 62%. A panel of twelve biomarkers was selected by the procedure and accounted for 34% of the total explained variability, of which 32% were due to five markers. Each biomarker’s individual contribution to the prediction of eGFR decline on top of clinical predictors was generally low. When included into the model, baseline eGFR exhibited the largest explained variability of eGFR decline (R2 of 79%) and the contribution of each biomarker dropped below 1%.
Conclusions:
In this longitudinal study of patients with type 2 diabetes and maintained eGFR at baseline, 12 of the 17 candidate biomarkers were associated with eGFR decline, but their predictive power was low
Insulin-Like Growth Factor 1 (IGF-1) in Parkinson's Disease: Potential as Trait-, Progression- and Prediction Marker and Confounding Factors
Introduction
Biomarkers indicating trait, progression and prediction of pathology and symptoms in Parkinson's
disease (PD) often lack specificity or reliability. Investigating biomarker variance
between individuals and over time and the effect of confounding factors is essential for the
evaluation of biomarkers in PD, such as insulin-like growth factor 1 (IGF-1).
Materials and Methods
IGF-1 serum levels were investigated in up to 8 biannual visits in 37 PD patients and 22
healthy controls (HC) in the longitudinal MODEP study. IGF-1 baseline levels and annual
changes in IGF-1 were compared between PD patients and HC while accounting for baseline
disease duration (19 early stage: 3.5 years; 18 moderate stage: >4 years), age, sex,
body mass index (BMI) and common medical factors putatively modulating IGF-1. In addition,
associations of baseline IGF-1 with annual changes of motor, cognitive and depressive
symptoms and medication dose were investigated.
Results
PD patients in moderate (130±26 ng/mL; p = .004), but not early stages (115±19, p>.1),
showed significantly increased baseline IGF-1 levels compared with HC (106±24 ng/mL;
p = .017). Age had a significant negative correlation with IGF-1 levels in HC (r = -.47,
p = .028) and no correlation in PD patients (r = -.06, p>.1). BMI was negatively correlated in
the overall group (r = -.28, p = .034). The annual changes in IGF-1 did not differ significantly between groups and were not correlated with disease duration. Baseline IGF-1 levels were
not associated with annual changes of clinical parameters.
Discussion
Elevated IGF-1 in serum might differentiate between patients in moderate PD stages and
HC. However, the value of serum IGF-1 as a trait-, progression- and prediction marker in
PD is limited as IGF-1 showed large inter- and intraindividual variability and may be modulated
by several confounders
Potential Markers of Progression in Idiopathic Parkinson’s Disease Derived From Assessment of Circular Gait With a Single Body-Fixed-Sensor: A 5 Year Longitudinal Study
Background and Aim: Development of objective, reliable and easy-to-use methods to obtain progression markers of Parkinson’s disease (PD) is required to evaluate interventions and to advance research in PD. This study aimed to provide quantitative markers of progression in idiopathic PD from the assessment of circular gait (walking in circles) with a single body-fixed inertial sensor placed on the lower back.Methods: The assessments were performed every 6 months over a (up to) 5 years period for 22 patients in early-stage PD, 27 patients in middle-stage PD and 25 healthy controls (HC). Longitudinal changes of 24 gait features extracted from accelerometry were compared between PD groups and HCs with generalized estimating equations (GEE) analysis, accounting for gait speed, age and levodopa medication state confounders when required.Results: Five gait features indicated progressive worsening in early stages of PD: number of steps, total duration and harmonic ratios calculated from vertical (VT), medio-lateral (ML), and anterior-posterior (AP) accelerations. For middle stages of PD, three gait features were identified as potential progression markers: stride time variability, and stride regularity from VT and AP acceleration.Conclusion: Faster progressive worsening of gait features in early and middle stages of PD relative to healthy controls over 5 years confirmed the potential of accelerometry-based assessments as quantitative progression markers in early and middle stages of the disease. The difference in significant parameters between both PD groups suggests that distinct domains of gait deteriorate in these PD stages. We conclude that instrumented circular walking assessment is a practical and useful tool in the assessment of PD progression that may have relevant potential to be implemented in clinical trials and even clinical routine, particularly in a developing digital era
- …