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 18 

Abstract  19 

Activation induced proliferation and clonal expansion of antigen specific lymphocytes is a 20 

hallmark of the adaptive immune response to pathogens. Recent studies identify two distinct 21 

control phases. In the first T and B lymphocytes integrate antigen and additional costimuli to 22 

motivate a programmed proliferative burst that ceases with a return to cell quiescence and 23 

eventual death. This proliferative burst is autonomously timed, ensuring an appropriate 24 

response magnitude whilst preventing uncontrolled expansion. This initial response is subject 25 

to further modification and extension by a range of signals that modify, expand and direct the 26 

emergence of a rich array of new cell types.  Thus, both robust clonal expansion of a small 27 

number of antigen specific T cells, and the concurrent emergence of extensive cellular 28 

diversity, confers immunity to a vast array of different pathogens. The in vivo response to a 29 

given pathogen is made up by the sum of all responding clones and is reproducible and 30 

pathogen specific. Thus, a precise description of the regulatory principles governing 31 

lymphocyte proliferation, differentiation and survival is essential to a unified understanding of 32 

the immune system.  33 

 34 

Introduction 35 

According to classic two-signal theory, lymphocytes face a binary decision when stimulated 36 

by antigen and must choose between tolerance (death) and activation (proliferation). A second 37 

signal is needed to tip the balance from one state to the other. Careful studies of the control of 38 

T and B cells are substantially modifying this view and replacing the binary decision with a 39 

quantitative signal integration model that tempers the overall strength and type of response to 40 

the nature of the threat. As a result, the magnitude and duration of the immune response must 41 

be seen as continuously variable. How this T cell behaviour is modulated, at molecular, single 42 

cell and population levels to achieve such a rich set of alternative outcomes remains under 43 

intensive investigation. Figure 1 illustrates the control of lymphocyte proliferation as a two-44 

stage process with each naive cell integrating activation signals, stochastic probabilities and 45 

ongoing signals to control the rich heterogenous population outcome. 46 

 47 

Early programming cooperates with ongoing signal integration to control the response 48 

magnitude 49 

In reviewing progress to date, it is helpful to distinguish two separate stages for lymphocyte 50 

activation.  In the first, an autonomously programmed response, leading to multiple changes in 51 
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fate are motivated by the initial stimuli. T cells divide several times subsequent to removal of 52 

stimuli.  In CD8+ T cells this can be after a very brief initial exposure [1-4] whereas in CD4+ 53 

T cells a longer antigen exposure is required to commit cells to an autonomous proliferative 54 

burst  [5,6]. A similar initial autonomous clonal division is observed in B cells [7-9]. In the 55 

second phase of control, the early cell programming is further modified by ongoing signals. 56 

For example, T cells modify their own environment by producing the growth factor IL-2 that 57 

can promote their continued division [10]. As signalling inputs can operate simultaneously on 58 

both phases of the response it can be difficult to determine individual control mechanisms. 59 

Costimulatory signals as well as cytokines and chemokines all play fundamental roles in 60 

regulating one or more parameters that determine the final cell numbers. Additional features of 61 

signal control, such as increased TCR affinity, enhanced dose, duration or mechanical 62 

properties of TCR-pMHC contacts or prolonged antigen exposure also result in a greater 63 

response magnitude, with increased rounds of cell division or greater recruitment of cells into 64 

division [11,12].  In many cases, the early expansion rate of activated T cells is unchanged in 65 

these systems. Instead, the duration of their expansion is increased [2,11,12] suggesting an 66 

equal proliferation rate of activated cells with more cells dropping out of division or dying 67 

sooner under weak stimulation conditions.  68 

 69 

For T cells the extent of the initial proliferative burst is a major determinant of response 70 

magnitude in vitro and in vivo. The average number of divisions undergone can vary with 71 

stimulation. T cells integrate all the signals they receive through the TCR, costimulatory 72 

molecules and cytokines receptors to determine the size of the initial burst, referred to as their 73 

initial ‘division destiny’ (DD) [13]**. Multiple contributions to DD, provided at the same time, 74 

added arithmetically allowing predictions to be made for the final response. In this study the 75 

authors demonstrate that many different combinations of costimulatory signals are capable of 76 

adding to a significant response outcome. These experiments also highlight control of the 77 

second phase of the T cell response: Cytokines such as IL-2 and IL-4 play both a major role in 78 

initiating, as well as sustaining / extending cell division beyond their initial autonomous DD. 79 

This maintenance was shown to be particularly important for T cells that have migrated to sites 80 

of infection or inflamed tissue [14,15]. T cells modulate IL-2 production and integration of IL-81 

2 signals as a mechanism of paracrine communication in order to fine tune and optimise the 82 

response magnitude [10,16,17]. Furthermore, although the proliferative effect of a particular 83 

stimulus can act predominantly on initial programming, it may also have alternate modulatory 84 

roles during the subsequent progression of the response. For instance, CD28 signalling 85 
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increases IL-2 production and sensitivity [18]. If IL-2 is blocked, the CD28 signal is still 86 

effective at programming and promoting division destiny changes into naïve T cells but the 87 

signal must be received prior to the first division to have an effect [13]. Later engagement of 88 

CD28 alters downstream fate selection during the response without having any further 89 

proliferative impact [19]. 90 

 91 

The regulatory precision of the initial burst of proliferation and return to quiescence by 92 

stimulated T and B cells [9] suggested a common mechanism might be found. This proved 93 

correct. The cell division-promoting proto-oncogene Myc [20]** is induced upon activation 94 

and lost over time until a minimal threshold is crossed, and division ceases. Rather than diluting 95 

by division, as was expected, Myc levels degraded over time at a predictable rate that was 96 

faithfully passed on to daughter cells independently of division number. As expected for this 97 

form of control, the level of Myc protein induced after activation was found proportional to the 98 

strength and number of signals received by the cell, and its level highly correlated with 99 

subsequent DD. Therefore, Myc translates the signals the cell receives into the time that each 100 

founder cell is given to divide before returning to quiescence [20].  101 

Furthermore, in addition of providing stimulatory signals on their own, inflammatory signals 102 

such as IL-12 and IFN-α can increase sensitivity to IL-2 signalling [14,21,22]. Continuous 103 

signalling via IL-2 or other cytokines slows the loss of Myc protein and therefore extending 104 

the period of time for which the cells can divide [20] [23]* [24]. Understanding how these 105 

factors function as part of a subcellular network, combining and cooperating to determine the 106 

ultimate proliferative potential of an individual T cell remains a major objective in the field of 107 

lymphocyte biology. 108 

 109 

These studies may have a further counterpart in the germinal centre. During affinity maturation 110 

germinal centre B cells travel from the light zone where they undergo positive selection to the 111 

dark zone and undergo somatic hypermutation [25]. Interaction with Tfh cells during the 112 

positive selection process provides proliferation and survival signals. In this context Myc 113 

expression is induced through interaction with Tfh cells and is seen in a proportion of, 114 

presumably, recently activated cells [26,27].  Affinity dependent stimulation is thought to 115 

control proliferation and survival with low affinity B cells dying in the light zone while 116 

dysfunctional BCR induced through mutation leads to cell death in the dark zone [28,29] [30]*. 117 

In parallel with the control of T and B cell DD, it seems likely that higher affinity B cell clones 118 

receive stronger stimuli and accumulate more Myc, extending their duration of proliferation in 119 
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the dark zone and therefore licensing these clones for more extensive somatic hypermutation 120 

[29]. 121 

 122 

Clonal concordance, probabilistic events and fate inheritance shape the response  123 

The proliferative and phenotypic profile of a responding T cell population is highly 124 

heterogeneous, even under highly controlled in vitro conditions. Despite this extensive 125 

diversity, there is a remarkable concordance of the proliferative fate within a clonal family 126 

while a considerable disparity is observed between different clones even in response to 127 

identical stimulation conditions [31] [32]* [33]*. In vivo studies have also demonstrated 128 

extensive heterogeneity in clone size and a distinct correlation between clonal proliferative 129 

potential and cellular phenotype [34-39]. The phenotypic correlation with clonal burst size 130 

points to a role for both heritability and division as determinants of the emergence of cellular 131 

heterogeneity [35,36,40]. This is complemented by studies that have elucidated a role for 132 

division progression in regulating specific components of T cell differentiation, such as 133 

cytokine production, cytotoxicity and surface marker expression [40-45]. 134 

 135 

Although there is a clear influence of clonal membership on division progression and 136 

phenotype, in vivo studies demonstrate substantially greater intraclonal diversity than the 137 

striking concordance observed in vitro [32,37,38]. TCR signal quality strongly determines the 138 

response outcome on a population basis, and although weakly stimulated cells expand less, 139 

many are still able to acquire effector functions and differentiate into memory cells [11,46,47]. 140 

Therefore the fate of T cell clones is not controlled by the TCR ligation quality alone, but TCR 141 

ligation works in concert with quantitative integration of additional signalling and stochastic 142 

events to determine the fate outcome of the clonal progeny [13,33,35] [46]** [48] [49]* 143 

[50,51].   144 

 145 

Many of the above studies highlight early stochasticity and familial heritability as key drivers 146 

of emergent heterogeneity. Several different models have been proposed to explain the 147 

diversity observed in T cell fates. The concept of asymmetric division of the founder cell 148 

resulting in two distinct fate outcomes of the daughter cells and their progeny has been 149 

proposed as a determinant of T cell fate and population heterogeneity [5,52-54]. Recent studies 150 

have proposed a role for the polarised segregation of Myc and subsequent asymmetric 151 

inheritance of metabolic programming as a determinant of CD8+ T cell fate selection [55,56]. 152 

However, the uneven inheritance of Myc between first-division T cells is at odds with its role 153 



6 
 

as a regulator of the highly symmetrical clonal phenomenon of DD [20].  In an alternative 154 

model the strong familial concordance in concert with early stochasticity are sufficient to 155 

describe the emergence of the clonal diversity [46,57]. Computational descriptions of clonal 156 

heterogeneity have also highlighted the capacity to resolve patterns of T and B cell 157 

diversification without the requirement of asymmetric fate segregation [50,58]. Furthermore, 158 

impairment of the capacity of cells to polarise their contents does not hinder the generation of 159 

lymphocyte diversity [59]. 160 

 161 

Recruitment into division as a first step directing the response magnitude 162 

The number of cells recruited into an immune response is another key determinant of response 163 

magnitude. Two main factors determine the number of cells recruited into division: firstly, the 164 

induction of a new survival program driven by the strength of stimulation selecting for strongly 165 

activated cells to survive [60]. Secondly, whether the surviving cells reach the activation 166 

threshold to enter proliferation. On a single cell level this threshold is controlled by the sum of 167 

TCR affinity and dose [12] [61]* [62,63] and other signals received by the cells. Consistent 168 

with the mechanism of signal addition, IL-2 or additional costimulation increases this precursor 169 

frequency and promotes the entry of weakly stimulated cells into division [61,64-66]. Similarly 170 

stimulation through the costimulatory receptor CD27 lowers the affinity threshold required for 171 

activation, recruiting more low affinity clones into the response, potentially as a measure to 172 

broaden the subsequent memory pool repertoire [67].  173 

On a population level, whether a response is observed is determined by the sum of all individual 174 

outcomes and the complex interaction between these cells and the molecules they produce. 175 

This can be described as a collective decision made by the T cell population [68]. IL-2 produced 176 

by strongly activated cells plays a critical role in this activation phase, as some low affinity T 177 

cells can reach the threshold to enter division through integration of IL-2 produced by strongly 178 

activated cells. The response rate of a mixed population of high and low affinity cells can be 179 

modelled and predicted accurately using a dynamic system incorporating IL-2, IL2R and PIK3 180 

levels controlling the accumulation of Cyclin D to reach the threshold of cell cycle entry [69]** 181 

demonstrating how the signal integration by individual cells controlling their fates fine tunes 182 

the overall response on the population basis.  183 

 184 

Survival as an additional and independent mechanism shaping the immune repertoire 185 

The survival of activated T cells critically underpins the ability to form an immune response. 186 

This process is carefully regulated by a quantitative balance between pro- and anti-apoptotic 187 
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members of the Bcl-2 family proteins of the intrinsic apoptotic pathway (reviewed in [70]). A 188 

survival program is induced after T activation, that is distinct from their naïve survival program 189 

and operates simultaneously but independently to the proliferation program [71,72]. Both pro-190 

survival and pro-apoptotic proteins are induced by T cell activation signals through the TCR, 191 

costimulatory molecules (i.e. CD28) or cytokines such as IL-2 [60,73-75]. A similar 192 

quantitative switch in survival programs occurs in B lymphocytes [70,76]. In cells receiving 193 

strong signals this balance favours a pro-survival state, however low affinity populations are 194 

more sensitive to shaping through differential survival as stimulation with a lower affinity TCR 195 

or a reduction in costimulatory signals and cytokines, favours death and the elimination of 196 

weaker responders [75,77-79]. This points to a key function in the regulation of the response 197 

quality.  198 

As the lymphocyte survival program is initiated by many of the same signals as proliferation it 199 

is often difficult to distinguish the relative importance of contributions of these processes in 200 

shaping the immune response; however several lines of evidence suggest their regulation is 201 

independent, and can be uncoupled. For instance, CD28 signalling and other growth factors 202 

promote survival in the absence of proliferation [80]. CD8+ T cells deficient in the kinase Erk2 203 

[81] or the transcription factor Bach2 [82] have been shown to have no defect in proliferative 204 

potential, but have a reduced response magnitude due to impaired survival. Furthermore the 205 

rate and extent of clonal expansion in strongly stimulated cells is not greatly impacted by cell 206 

death. When pro-apoptotic molecule Bim is deleted or pro-survival molecule Bcl-2 is 207 

overexpressed in T or B lymphocytes they undergo the same number of divisions in response 208 

to a given stimulus irrespective of the enhanced cell survival [13,20,83,84]. A similar effect 209 

can be observed in vivo, with Bim-deficient  CD8+ T cells expanding to the same extent but 210 

taking longer to contract [85], further demonstrating the independence of cell division and 211 

survival. The significance of this is highlighted by the consequences of changes to either 212 

parameter. The combined effect of small changes in survival or DD time synergise to a greatly 213 

enhanced response when applied in combination and can be predicted by combining the 214 

probability distributions for each timer [20]. 215 

 216 

 217 

Conclusions: 218 

When the number of alternative cell fates, and the large number of known modifiers are 219 

enumerated, the regulation of T and B cell responses appears impossibly complex. When 220 

combined with the fine detail of cellular niches in different tissues, and the potential for 221 
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transient and persistent signal exposure, it is easy to imagine a daunting combinatorial problem 222 

for control. This pessimistic view is at odds with the general observation that immune responses 223 

are typically robust and reproducible, and many features of cell responses can be recreated in 224 

much simpler in vitro environments. 225 

In resolving this paradox, we suggest that a timed cellular program, that includes an automated 226 

return to quiescence and even eventual death, can serve as a powerful new paradigm for 227 

interpreting the complex control of T, B and GC cell responses. Manipulation of this core 228 

cellular program by multiple modifying inputs provides the foundation for building a 229 

reproducible, but highly regulated system. Such a model can also help explain how the present 230 

complex system may have evolved from more primitive developmental states that utilised a 231 

higher level of cellular autonomy to affect an adaptive immune outcome [7]. We envisage that 232 

continued work on this activation paradigm with increasingly quantitative tools will deliver 233 

scalable models with the power of prediction and significant potential for immune system 234 

control. 235 

 236 

   237 
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Figure legends 573 

 574 

Figure 1. An autonomous self-limiting response underlies T and B cell activation. All 575 

lymphocytes receive and process a large number of signals from their environment, antigen 576 

and accessory cells. These signals serve to set timers for the burst of division and the eventual 577 

death of these cells, as well as either division-linked or timed differentiation changes. Similar 578 

cells do not perceive signals in identical manner, leading to clonal family dependent variation 579 

that may have a stochastic basis (1). All cell functions governing this initial internal immune 580 

program can be affected by external signals, and further fate changes regulated by division or 581 

time ensures sensitive and broad ranging fate control (2, 3).  582 
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