6 research outputs found

    Bollettino on-line del progetto Ritmare

    Get PDF
    Il progetto all’interno del quale si è inserita l' attività "La scienza del Mare nelle scuole" è il Progetto Ritmare (La Ricerca Italiana per il Mare). Il progetto Ritmare è un progetto strategico per la ricerca sul mare in Italia, che vuole coniugare le risorse ambientali del mare con l’uso connesso alle attività produttive e allo sfruttamento energetico delle sue risorse, sviluppando tecnologie ed innovazione e, al tempo stesso, promuovendone la sua conoscenza e il rispetto. In tale contesto il progetto propone di sensibilizzare gli studenti delle scuole di primo e secondo grado alle scienze del mare, sperimentando un approccio multidisciplinare che unisca il mondo scientifico e tecnologico a quello didattico, attraverso l'uso di strumenti di comunicazione che vadano dalle forme artistiche ed espressive a quelle prettamente tecnologiche e multimediali

    Characterization of <i>Bifidobacterium asteroides</i> Isolates

    No full text
    Bifidobacteria have long been recognized as bacteria with probiotic and therapeutic features. The aim of this work is to characterize the Bifidobacterium asteroides BA15 and BA17 strains, isolated from honeybee gut, to evaluate its safety for human use. An in-depth assessment was carried out on safety properties (antibiotic resistance profiling, β-hemolytic, DNase and gelatinase activities and virulence factor presence) and other properties (antimicrobial activity, auto-aggregation, co-aggregation and hydrophobicity). Based on phenotypic and genotypic characterization, both strains satisfied all the safety requirements. More specifically, genome analysis showed the absence of genes encoding for glycopeptide (vanA, vanB, vanC-1, vanC-2, vanD, vanE, vanG), resistance to tetracycline (tetM, tetL and tetO) and virulence genes (asa1, gelE, cylA, esp, hyl)

    Striped mullet (Mugil cephalus) hemoglobin system: multiplicity and functional properties

    No full text
    The most frequent (90\%) phenotype of the hemoglobin system of M. cephalus presented two major hemoglobins, the more anodal HbI accounting for approximately 70\% of the total. The two hemoglobin components separated by ion-exchange chromatography were analyzed by reverse-phase HPLC and electrospray ionization-mass spectrometry which revealed a more complex pattern: HbI consists in four different globins, two beta (named beta 1 and beta 3) and two co-eluting alpha chains (alpha 1 and alpha 2); HbII consists in three globins, one beta chain (named beta 2) and the same alpha 1 and alpha 2 present in HbI. The oxygen-binding properties of both hemoglobin components purified by DEAE cellulose were almost identical to those of the hemolysate: stripped hemoglobin showed a large Bohr effect which was enhanced by chloride ions and, at a larger extent, by organic phosphates which, at acidic pH values gave rise to the Root effect. A series of oxygen-binding experiments at increasing GTP concentrations was carried out in order to compare GTP-binding activities in the absence and presence of physiological amounts of chloride. The results indicated that hemoglobin do have two sites for GTP binding. In the absence of chloride, the two sites cannot be discriminated, whereas in the presence of chloride, a competition between the two anions occurred for both GTP-binding sites. The presence of multiple hemoglobin components with identical properties confirms that hemoglobin heterogeneity that often occurs in fish cannot be only explained as an evolutionary response to the physiological and/or environmental needs of the species

    Epidemiology, Clinical Features and Prognostic Factors of Pediatric SARS-CoV-2 Infection: Results From an Italian Multicenter Study

    Get PDF
    Background: Many aspects of SARS-CoV-2 infection in children and adolescents remain unclear and optimal treatment is debated. The objective of our study was to investigate epidemiological, clinical and therapeutic characteristics of pediatric SARS-CoV-2 infection, focusing on risk factors for complicated and critical disease. Methods: The present multicenter Italian study was promoted by the Italian Society of Pediatric Infectious Diseases, involving both pediatric hospitals and general pediatricians/family doctors. All subjects under 18 years of age with documented SARS-CoV-2 infection and referred to the coordinating center were enrolled from March 2020. Results: As of 15 September 2020, 759 children were enrolled (median age 7.2 years, IQR 1.4; 12.4). Among the 688 symptomatic children, fever was the most common symptom (81.9%). Barely 47% of children were hospitalized for COVID-19. Age was inversely related to hospital admission (p < 0.01) and linearly to length of stay (p = 0.014). One hundred forty-nine children (19.6%) developed complications. Comorbidities were risk factors for complications (p < 0.001). Viral coinfections, underlying clinical conditions, age 5-9 years and lymphopenia were statistically related to ICU admission (p < 0.05). Conclusions: Complications of COVID-19 in children are related to comorbidities and increase with age. Viral co-infections are additional risk factors for disease progression and multisystem inflammatory syndrome temporarily related to COVID-19 (MIS-C) for ICU admission

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore