10 research outputs found

    Deletion of the ORF2 gene of the neuropathogenic equine herpesvirus type 1 strain Ab4 reduces virulence while maintaining strong immunogenicity

    Get PDF
    Background Equine herpesvirus type 1 (EHV-1) induces respiratory infection, abortion, and neurologic disease with significant impact. Virulence factors contributing to infection and immune evasion are of particular interest. A potential virulence factor of the neuropathogenic EHV-1 strain Ab4 is ORF2. This study on 24 Icelandic horses, 2 to 4 years of age, describes the infection with EHV-1 Ab4, or its deletion mutant devoid of ORF2 (Ab4ΔORF2) compared to non-infected controls (each group n = 8). The horses’ clinical presentation, virus shedding, viremia, antibody and cellular immune responses were monitored over 260 days after experimental infection. Results Infection with Ab4ΔORF2 reduced fever and minimized nasal virus shedding after infection compared to the parent virus strain Ab4, while Ab4ΔORF2 established viremia similar to Ab4. Concurrently with virus shedding, intranasal cytokine and interferon α (IFN-α) production increased in the Ab4 group, while horses infected with Ab4ΔORF2 expressed less IFN-α. The antibody response to EHV-1 was evaluated by a bead-based multiplex assay and was similar in both infected groups, Ab4 and Ab4ΔORF2. EHV-1 specific immunoglobulin (Ig) G1 was induced 8 days after infection (d8 pi) with a peak on d10–12 pi. EHV-1 specific IgG4/7 increased starting on d10 pi, and remained elevated in serum until the end of the study. The intranasal antibody response to EHV-1 was dominated by the same IgG isotypes and remained elevated in both infected groups until d130 pi. In contrast to the distinct antibody response, no induction of EHV-1 specific T-cells was detectable by flow cytometry after ex vivo re-stimulation of peripheral blood mononuclear cells (PBMC) with EHV-1 in any group. The cellular immune response was characterized by increased secretion of IFN-γ and interleukin10 in response to ex vivo re-stimulation of PBMC with EHV-1. This response was present during the time of viremia (d5–10 pi) and was similar in both infected groups, Ab4 and Ab4ΔORF2. Conclusions ORF2 is a virulence factor of EHV-1 Ab4 with impact on pyrexia and virus shedding from the nasal mucosa. In contrast, ORF2 does not influence viremia. The immunogenicity of the Ab4ΔORF2 and parent Ab4 viruses are identical

    Neonatal Immunization with a Single IL-4/Antigen Dose Induces Increased Antibody Responses after Challenge Infection with Equine Herpesvirus Type 1 (EHV-1) at Weanling Age

    Get PDF
    Neonatal foals respond poorly to conventional vaccines. These vaccines typically target T-helper (Th) cell dependent B-cell activation. However, Th2-cell immunity is impaired in foals during the first three months of life. In contrast, neonatal basophils are potent interleukin-4 (IL-4) producers. The purpose of this study was to develop a novel vaccine triggering the natural capacity of neonatal basophils to secrete IL-4 and to evaluate if vaccination resulted in B-cell activation and antibody production against EHV-1 glycoprotein C (gC). Neonatal vaccination was performed by oral biotinylated IgE (IgE-bio) treatment at birth followed by intramuscular injection of a single dose of streptavidin-conjugated gC/IL-4 fusion protein (Sav-gC/IL-4) for crosslinking of receptor-bound IgE-bio (group 1). Neonates in group 2 received the intramuscular Sav-gC/IL-4 vaccine only. Group 3 remained non-vaccinated at birth. After vaccination, gC antibody production was not detectable. The ability of the vaccine to induce protection was evaluated by an EHV-1 challenge infection after weaning at 7 months of age. Groups 1 and 2 responded to EHV-1 infection with an earlier onset and overall significantly increased anti-gC serum antibody responses compared to control group 3. In addition, group 1 weanlings had a decreased initial fever peak after infection indicating partial protection from EHV-1 infection. This suggested that the neonatal vaccination induced a memory B-cell response at birth that was recalled at weanling age after EHV-1 challenge. In conclusion, early stimulation of neonatal immunity via the innate arm of the immune system can induce partial protection and increased antibody responses against EHV-1.Funding for this project was provided by the Harry M. Zweig Memorial Fund for Equine Research at Cornell University ‘A Novel Strategy to Boost Antibody Production to EHV-1 in Neonates’ (http://vet.cornell.edu/research/Zweig/). Monoclonal antibody development for horse cell surface markers and cytokines was supported by USDA grant #2005-01812 ‘The US Veterinary Immune Reagent Network’ and #2015-67015-23072 ‘Equine Immune Reagents: Development of monoclonal antibodies to improve the analysis of immunity in horses’ (https://nifa.usda.gov/).Peer Reviewe

    The deletion of the ORF1 and ORF71 genes reduces virulence of the neuropathogenic EHV-1 strain Ab4 without compromising host immunity in horses

    Get PDF
    The equine herpesvirus type 1 (EHV-1) ORF1 and ORF71 genes have immune modulatory effects in vitro. Experimental infection of horses using virus mutants with multiple deletions including ORF1 and ORF71 showed promise as vaccine candidates against EHV-1. Here, the combined effects of ORF1 and ORF71 deletions from the neuropathogenic EHV-1 strain Ab4 on clinical disease and host immune response were further explored. Three groups of EHV-1 naïve horses were experimentally infected with the ORF1/71 gene deletion mutant (Ab4ΔORF1/71), the parent Ab4 strain, or remained uninfected. In comparison to Ab4, horses infected with Ab4ΔORF1/71 did not show the initial high fever peak characteristic of EHV-1 infection. Ab4ΔORF1/71 infection had reduced nasal shedding (1/5 vs. 5/5) and, simultaneously, decreased intranasal interferon (IFN)-α, interleukin (IL)-10 and soluble CD14 secretion. However, Ab4 and Ab4ΔORF1/71 infection resulted in comparable viremia, suggesting these genes do not regulate the infection of the mononuclear cells and subsequent viremia. Intranasal and serum anti-EHV-1 antibodies to Ab4ΔORF1/71 developed slightly slower than those to Ab4. However, beyond day 12 post infection (d12pi) serum antibodies in both virus-infected groups were similar and remained increased until the end of the study (d114pi). EHV-1 immunoglobulin (Ig) G isotype responses were dominated by short-lasting IgG1 and long-lasting IgG4/7 antibodies. The IgG4/7 response closely resembled the total EHV-1 specific antibody response. Ex vivo re-stimulation of PBMC with Ab4 resulted in IFN-γ and IL-10 secretion by cells from both infected groups within two weeks pi. Flow cytometric analysis showed that IFN-γ producing EHV-1-specific T-cells were mainly CD8+/IFN-γ+ and detectable from d32pi on. Peripheral blood IFN-γ+ T-cell percentages were similar in both infected groups, albeit at low frequency (~0.1%). In summary, the Ab4ΔORF1/71 gene deletion mutant is less virulent but induced antibody responses and cellular immunity similar to the parent Ab4 strain

    Phenotype and function of IgE-binding monocytes in equine Culicoides hypersensitivity.

    No full text
    Human IgE-binding monocytes are identified as allergic disease mediators, but it is unknown whether IgE-binding monocytes promote or prevent an allergic response. We identified IgE-binding monocytes in equine peripheral blood as IgE+/MHCIIhigh/CD14low cells that bind IgE through an FcεRI αɣ variant. IgE-binding monocytes were analyzed monthly in Culicoides hypersensitive horses and nonallergic horses living together with natural exposure to Culicoides midges. The phenotype and frequency of IgE-binding monocytes remained consistent in all horses regardless of Culicoides exposure. All horses upregulated IgE-binding monocyte CD16 expression following initial Culicoides exposure. Serum total IgE concentration and monocyte surface IgE densities were positively correlated in all horses. We also demonstrated that IgE-binding monocytes produce IL-10, but not IL-4, IL-17A, or IFN-γ, following IgE crosslinking. In conclusion, we have characterized horse IgE-binding monocytes for the first time and further studies of these cells may provide important connections between regulation and cellular mechanisms of IgE-mediated diseases

    Peripheral blood basophils are the main source for early interleukin-4 secretion upon in vitro stimulation with Culicoides allergen in allergic horses.

    No full text
    Interleukin-4 (IL-4) is a key cytokine secreted by type 2 T helper (Th2) cells that orchestrates immune responses during allergic reactions. Human and mouse studies additionally suggest that basophils have a unique role in the regulation of allergic diseases by providing initial IL-4 to drive T cell development towards the Th2 phenotype. Equine Culicoides hypersensitivity (CH) is a seasonal immunoglobulin E (IgE)-mediated allergic dermatitis in horses in response to salivary allergens from Culicoides (Cul) midges. Here, we analyzed IL-4 production in peripheral blood mononuclear cells (PBMC) of CH affected (n = 8) and healthy horses (n = 8) living together in an environment with natural Cul exposure. During Cul exposure when allergic horses had clinical allergy, IL-4 secretion from PBMC after stimulation with Cul extract was similar between healthy and CH affected horses. In contrast, allergic horses had higher IL-4 secretion from PBMC than healthy horses during months without allergen exposure. In addition, allergic horses had increased percentages of IL-4+ cells after Cul stimulation compared to healthy horses, while both groups had similar percentages of IL-4+ cells following IgE crosslinking. The IL-4+ cells were subsequently characterized using different cell surface markers as basophils, while very few allergen-specific CD4+ cells were detected in PBMC after Cul extract stimulation. Similarly, IgE crosslinking by anti-IgE triggered basophils to produce IL-4 in all horses. PMA/ionomycin consistently induced high percentages of IL-4+ Th2 cells in both groups confirming that T cells of all horses studied were capable of IL-4 production. In conclusion, peripheral blood basophils produced high amounts of IL-4 in allergic horses after stimulation with Cul allergens, and allergic horses also maintained higher basophil percentages throughout the year than healthy horses. These new findings suggest that peripheral blood basophils may play a yet underestimated role in innate IL-4 production upon allergen activation in horses with CH. Basophil-derived IL-4 might be a crucial early signal for immune induction, modulating of immune responses towards Th2 immunity and IgE production

    The expression of equine keratins K42 and K124 is restricted to the hoof epidermal lamellae of Equus caballus.

    No full text
    The equine hoof inner epithelium is folded into primary and secondary epidermal lamellae which increase the dermo-epidermal junction surface area of the hoof and can be affected by laminitis, a common disease of equids. Two keratin proteins (K), K42 and K124, are the most abundant keratins in the hoof lamellar tissue of Equus caballus. We hypothesize that these keratins are lamellar tissue-specific and could serve as differentiation- and disease-specific markers. Our objective was to characterize the expression of K42 and K124 in equine stratified epithelia and to generate monoclonal antibodies against K42 and K124. By RT-PCR analysis, keratin gene (KRT) KRT42 and KRT124 expression was present in lamellar tissue, but not cornea, haired skin, or hoof coronet. In situ hybridization studies showed that KRT124 localized to the suprabasal and, to a lesser extent, basal cells of the lamellae, was absent from haired skin and hoof coronet, and abruptly transitions from KRT124-negative coronet to KRT124-positive proximal lamellae. A monoclonal antibody generated against full-length recombinant equine K42 detected a lamellar keratin of the appropriate size, but also cross-reacted with other epidermal keratins. Three monoclonal antibodies generated against N- and C-terminal K124 peptides detected a band of the appropriate size in lamellar tissue and did not cross-react with proteins from haired skin, corneal limbus, hoof coronet, tongue, glabrous skin, oral mucosa, or chestnut on immunoblots. K124 localized to lamellar cells by indirect immunofluorescence. This is the first study to demonstrate the localization and expression of a hoof lamellar-specific keratin, K124, and to validate anti-K124 monoclonal antibodies

    Body temperatures, clinical signs, nasal shedding and viremia after experimental infection of weanlings with the EHV-1 strain NY03.

    No full text
    <p>The groups (n = 5 per group) were established based on IgE-bio and/or EHV-1 gC antigen treatments of the foals at birth: group 1 received IgE-bio and Sav-gC/IL-4 antigen; group 2 received Sav-gC/IL-4 antigen; control group 3 no treatment at birth. EHV-1 challenge infection occurred at seven months of age (day 0; arrow) and was performed under identical conditions for all three groups. On day 0, measurements and samples were taken before infection. (A) Body temperatures; the dotted horizontal line shows the cut-off value for fever (101.5°F); (B) clinical scores; (C) nasal shedding expressed as viral copy numbers of the EHV-1 gene gB per ml nasal secretion sample and (D) viremia (gB Ct-value) per 5 x 10<sup>6</sup> PBMC. Nasal shedding and viremia were evaluated by real-time PCR. The dotted horizontal line shows the positive PCR Ct-value cut-off value. All negative PCR values were set to this value. All graphs show means and standard errors per group. Significant differences between groups: a = groups 1 and 3; c = groups 1 and 2.</p

    Anti-gC isotypes in the serum of weanlings after experimental EHV-1 infection (arrow).

    No full text
    <p>Weanlings in group 1 received IgE and EHV-1 gC antigen at birth. Weanlings in group 2 received EHV-1 gC antigen at birth. Weanlings in the control group 3 did not receive any treatment at birth. Antibody isotypes to gC were measured in a EHV-1 Multiplex assay. (A) anti-IgM; (B) anti-IgG6; (C) anti-IgG1; (D) anti-IgG1/3; (E) anti-IgG4/7; (F) anti-gC IgG3/5. The graphs show means and standard errors by group. Significant differences between groups: a = groups 1 and 3; b = groups 2 and 3.</p

    Cytokine secretion from PBMC of weanlings after experimental EHV-1 infection <i>in vivo</i> (arrow).

    No full text
    <p>Weanlings in group 1 received IgE and EHV-1 gC antigen as neonates and weanlings in group 2 received EHV-1 gC antigen. Weanlings in the control group 3 did not receive any neonatal. PBMC were isolated up to 5 months post EHV-1 infection. Cells were re-stimulated <i>ex vivo</i> with EHV-1 for 48 hour to provoke cytokine production. PBMC in medium served as non-stimulated control. Cytokines in cell culture supernatants were determined by cytokine multiplex analysis. The cytokine secretion values in graphs A-D were corrected by the non-stimulated control values of each weanling and day. The graphs show means and standard errors by group. Significant differences between groups: a = groups 1 and 3; b = groups 2 and 3; c = groups 1 and 2.</p

    Antibodies to gC and gD in serum of weanlings after experimental EHV-1 infection (day 0; arrow).

    No full text
    <p>The weanling groups correspond to IgE-bio and/or EHV-1 gC antigen treatments during the neonatal period. At weanling age all three groups of weanlings were infected with the same dose of EHV-1 strain NY03. Antibodies in serum were determined by a EHV-1 Multiplex assay. The graphs show: (A) total serum anti-EHV-1 gC antibodies and (B) total serum anti-EHV-1 gD antibodies. The graphs represent means and standard errors by group. Significant differences between groups: a = groups 1 and 3; b = groups 2 and 3.</p
    corecore