88 research outputs found

    Antimicrobial Resistance among Isolates Causing Invasive Pneumococcal Disease before and after Licensure of Heptavalent Conjugate Pneumococcal Vaccine

    Get PDF
    BACKGROUND: The impact of the pneumococcal conjugate vaccine (PCV-7) on antibiotic resistance among pneumococcal strains causing invasive pneumococcal disease (IPD) has varied in different locales in the United States. We assessed trends in IPD including trends for IPD caused by penicillin non-susceptible strains before and after licensure of PCV-7 and the impact of the 2008 susceptibility breakpoints for penicillin on the epidemiology of resistance. METHODOLOGY/PRINCIPAL FINDINGS: We performed a retrospective review of IPD cases at Morgan Stanley Children's Hospital of New York-Presbyterian, Columbia University Medical Center. Subjects were < or = 18 years of age with Streptococcus pneumoniae isolated from sterile body sites from January 1995-December 2006. The rate of IPD from 1995-1999 versus 2002-2006 significantly decreased from 4.1 (CI(95) 3.4, 4.8) to 1.7 (CI(95) 1.3, 2.2) per 1,000 admissions. Using the breakpoints in place during the study period, the proportion of penicillin non-susceptible strains increased from 27% to 49% in the pre- vs. post-PCV-7 era, respectively (p = 0.001), although the rate of IPD caused by non-susceptible strains did not change from 1995-1999 (1.1 per 1,000 admissions, CI(95) 0.8, 1.5) when compared with 2002-2006 (0.8 per 1,000 admissions, CI(95) 0.6, 1.2). In the multivariate logistic regression model controlling for the effects of age, strains causing IPD in the post-PCV-7 era were significantly more likely to be penicillin non-susceptible compared with strains in the pre-PCV-7 era (OR 2.46, CI(95) 1.37, 4.40). However, using the 2008 breakpoints for penicillin, only 8% of strains were non-susceptible in the post-PCV-7 era. CONCLUSIONS/SIGNIFICANCE: To date, there are few reports that document an increase in the relative proportion of penicillin non-susceptible strains of pneumococci causing IPD following the introduction of PCV-7. Active surveillance of pneumococcal serotypes and antibiotic resistance using the new penicillin breakpoints is imperative to assess potential changes in the epidemiology of IPD

    Development of a Broadly Protective, Self-Adjuvanting Subunit Vaccine to Prevent Infections by Pseudomonas aeruginosa

    Get PDF
    Infections caused by the opportunistic pathogen Pseudomonas aeruginosa can be difficult to treat due to innate and acquired antibiotic resistance and this is exacerbated by the emergence of multi-drug resistant strains. Unfortunately, no licensed vaccine yet exists to prevent Pseudomonas infections. Here we describe a novel subunit vaccine that targets the P. aeruginosa type III secretion system (T3SS). This vaccine is based on the novel antigen PaF (Pa Fusion), a fusion of the T3SS needle tip protein, PcrV, and the first of two translocator proteins, PopB. Additionally, PaF is made self-adjuvanting by the N-terminal fusion of the A1 subunit of the mucosal adjuvant double-mutant heat-labile enterotoxin (dmLT). Here we show that this triple fusion, designated L-PaF, can activate dendritic cells in vitro and elicits strong IgG and IgA titers in mice when administered intranasally. This self-adjuvanting vaccine expedites the clearance of P. aeruginosa from the lungs of challenged mice while stimulating host expression of IL-17A, which may be important for generating a protective immune response in humans. L-PaF’s protective capacity was recapitulated in a rat pneumonia model, further supporting the efficacy of this novel fusion vaccine

    MRSA Causing Infections in Hospitals in Greater Metropolitan New York: Major Shift in the Dominant Clonal Type between 1996 and 2014

    Get PDF
    A surveillance study in 1996 identified the USA100 clone (ST5/SCCmecII)–also known as the “New York/Japan” clone—as the most prevalent MRSA causing infections in 12 New York City hospitals. Here we update the epidemiology of MRSA in seven of the same hospitals eighteen years later in 2013/14. Most of the current MRSA isolates (78 of 121) belonged to the MRSA clone USA300 (CC8/SCCmecIV) but the USA100 clone–dominant in the 1996 survey–still remained the second most frequent MRSA (25 of the 121 isolates) causing 32% of blood stream infections. The USA300 clone was most common in skin and soft tissue infections (SSTIs) and was associated with 84.5% of SSTIs compared to 5% caused by the USA100 clone. Our data indicate that by 2013/14, the USA300 clone replaced the New York/Japan clone as the most frequent cause of MRSA infections in hospitals in Metropolitan New York. In parallel with this shift in the clonal type of MRSA, there was also a striking change in the types of MRSA infections from 1996 to 2014

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Comparison of BD Phoenix to Vitek 2, MicroScan MICroSTREP, and Etest for Antimicrobial Susceptibility Testing of Streptococcus pneumoniae▿

    No full text
    The performance of the BD Phoenix Automated Microbiology System (BD Diagnostic Systems) was compared to those of the Vitek 2 (bioMérieux), the MicroScan MICroSTREP plus (Siemens), and Etest (bioMérieux) for antibiotic susceptibility tests (AST) of 311 clinical isolates of Streptococcus pneumoniae. The overall essential agreement (EA) between each test system and the reference microdilution broth reference method for S. pneumoniae AST results was >95%. For Phoenix, the EAs of individual antimicrobial agents ranged from 90.4% (clindamycin) to 100% (vancomycin and gatifloxacin). The categorical agreements (CA) of Phoenix, Vitek 2, MicroScan, and Etest for penicillin were 95.5%, 94.2%, 98.7%, and 97.7%, respectively. The overall CA for Phoenix was 99.3% (1 very major error [VME] and 29 minor errors [mEs]), that for Vitek 2 was 98.8% (7 VMEs and 28 mEs), and those for MicroScan and Etest were 99.5% each (19 and 13 mEs, respectively). The average times to results for Phoenix, Vitek 2, and the manual methods were 12.1 h, 9.8 h, and 24 h, respectively. From these data, the Phoenix AST results demonstrated a high degree of agreement with all systems evaluated, although fewer VMEs were observed with the Phoenix than with the Vitek 2. Overall, both automated systems provided reliable AST results for the S. pneumoniae-antibiotic combinations in half the time required for the manual methods, rendering them more suitable for the demands of expedited reporting in the clinical setting

    Carbapenem-resistant Enterobacteriaceae colonization (CRE) and subsequent risk of infection and 90-day mortality in critically ill patients, an observational study.

    Get PDF
    BACKGROUND:Carbapenem-resistant Enterobacteriaceae (CRE) have emerged as an urgent public health threat. Intestinal colonization with CRE has been identified as a risk factor for the development of systemic CRE infection, but has not been compared to colonization with third and/or fourth generation cephalosporin-resistant (Ceph-R) Enterobacteriaceae. Moreover, the risk conferred by colonization on adverse outcomes is less clear, particularly in critically ill patients admitted to the intensive care unit (ICU). METHODS:We carried out a cohort study of consecutive adult patients screened for rectal colonization with CRE or Ceph-R upon ICU entry between April and July 2013. We identified clinical variables and assessed the relationship between CRE or Ceph-R colonization and subsequent systemic CRE infection within 30 days (primary outcome) and all-cause mortality within 90 days (secondary outcome). RESULTS:Among 338 ICU patients, 94 (28%) were colonized with either Ceph-R or CRE. 26 patients developed CRE infection within 30 days of swab collection; 47% (N = 17/36) of CRE-colonized and 3% (N = 2/58) of Ceph-R colonized patients. 36% (N = 13/36) of CRE-colonized patients died within 90 days compared to 31% (N = 18/58) of Ceph-R-colonized and 15% (N = 37/244) of non-colonized patients. In a multivariable analysis, CRE colonization independently predicted development of a systemic CRE infection at 30 days (aOR 10.8, 95% CI2.8-41.9, p = 0.0006); Ceph-R colonization did not (aOR 0.5, 95% CI0.1-3.3, p = 0.5). CRE colonization was associated with increased 90-day mortality in a univariable analysis (p-value 0.001), in a multivariable model, previous hospitalization and medical ICU admission were independent predictors of 90-day mortality whereas CRE colonization approached significance (aOR 2.3, 95% CI1.0-5.3, p = 0.056). CONCLUSIONS:Our study highlights the increased risk of CRE infection and mortality in patients with CRE colonization at the time of ICU admission. Future studies are needed to assess how CRE colonization can guide empiric antibiotic choices and to develop novel decolonization strategies
    corecore