37 research outputs found

    Sonic hedgehog is required for vascular outgrowth in the hindbrain choroid plexus

    Get PDF
    AbstractCritical to the exchange and metabolic functions served by tissues like brain choroid plexi and lung is the coherent development of an epithelial sheet of large surface area in tight apposition to an extensive vascular bed. Here, we present functional experiments in the mouse demonstrating that Sonic hedgehog (Shh) produced by hindbrain choroid plexus epithelium induces the extensive vascular outgrowths and vascular surface area fundamental to choroid plexus functions, but does not induce the more specialized endothelial cell features of fenestrations and bore size. Our findings indicate that these Shh-dependent vascular elaborations occur even in the presence of Vegf and other established angiogenic factors, suggesting either that the levels of these factors are inadequate in the absence of Shh or that a different set of factors may be more essential to choroid plexus outgrowth. Transducing the Shh signal is a perivascular cell—the pericyte—rather than the more integral vascular endothelial cell itself. Moreover, our findings suggest that hindbrain choroid plexus endothelial cells, as compared to other vascular endothelial cells, are more dependent upon pericytes for instruction. Thus, in addition to Shh acting on the progenitor pool for choroid plexus epithelial cells, as previously shown, it also acts on choroid plexus pericytes, and together serves the important role of coordinating the development of two disparate yet functionally dependent structures—the choroid plexus vasculature and its ensheathing epithelium

    The choroid plexus and cerebrospinal fluid: Emerging roles in development, disease, and therapy

    Get PDF
    Although universally recognized as the source of cerebrospinal fluid (CSF), the choroid plexus (ChP) has been one of the most understudied tissues in neuroscience. The reasons for this are multiple and varied, including historical perceptions about passive and permissive roles for the ChP, experimental issues, and lack of clinical salience. However, recent work on the ChP and instructive signals in the CSF have sparked new hypotheses about how the ChP and CSF provide unexpected means for regulating nervous system structure and function in health and disease, as well as new ChP-based therapeutic approaches using pluripotent stem cell technology. This minisymposium combines new and established investigators to capture some of the newfound excitement surrounding the ChP-CSF system

    Identification of Serotonergic Neuronal Modules that Affect Aggressive Behavior

    Get PDF
    SummaryEscalated aggression can have devastating societal consequences, yet underlying neurobiological mechanisms are poorly understood. Here, we show significantly increased inter-male mouse aggression when neurotransmission is constitutively blocked from either of two subsets of serotonergic, Pet1+ neurons: one identified by dopamine receptor D1(Drd1a)::cre-driven activity perinatally, and the other by Drd2::cre from pre-adolescence onward. Blocking neurotransmission from other Pet1+ neuron subsets of similar size and/or overlapping anatomical domains had no effect on aggression compared with controls, suggesting subtype-specific serotonergic neuron influences on aggression. Using established and novel intersectional genetic tools, we further characterized these subtypes across multiple parameters, showing both overlapping and distinct features in axonal projection targets, gene expression, electrophysiological properties, and effects on non-aggressive behaviors. Notably, Drd2::cre marked 5-HT neurons exhibited D2-dependent inhibitory responses to dopamine in slices, suggesting direct and specific interplay between inhibitory dopaminergic signaling and a serotonergic subpopulation. Thus, we identify specific serotonergic modules that shape aggression

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception

    Molecular profiling defines evolutionarily conserved transcription factor signatures of major vestibulospinal neuron groups

    No full text
    Vestibulospinal neurons are organized into discrete groups projecting from brainstem to spinal cord, enabling vertebrates to maintain proper balance and posture. The two largest groups are the lateral vestibulospinal tract (LVST) group and the contralateral medial vestibulospinal tract (cMVST) group, with different projection lateralities and functional roles. In search of a molecular basis for these differences, we performed RNA sequencing on LVST and cMVST neurons from mouse and chicken embryos followed by immunohistofluorescence validation. Focusing on transcription factor (TF)-encoding genes, we identified TF signatures that uniquely distinguish the LVST from the cMVST group and further parse different rhombomere-derived portions comprising the cMVST group. Immunohistofluorescence assessment of the CNS from spinal cord to cortex demonstrated that these TF signatures are restricted to the respective vestibulospinal groups and some neurons in their immediate vicinity. Collectively, these results link the combinatorial expression of TFs to developmental and functional subdivisions within the vestibulospinal system

    Functional and Developmental Identification of a Molecular Subtype of Brain Serotonergic Neuron Specialized to Regulate Breathing Dynamics

    Get PDF
    Serotonergic neurons modulate behavioral and physiological responses from aggression and anxiety to breathing and thermoregulation. Disorders involving serotonin (5HT) dysregulation are commensurately heterogeneous and numerous. We hypothesized that this breadth in functionality derives in part from a developmentally determined substructure of distinct subtypes of 5HT neurons each specialized to modulate specific behaviors. By manipulating developmentally defined subgroups one by one chemogenetically, we find that the Egr2-Pet1 subgroup is specialized to drive increased ventilation in response to carbon dioxide elevation and acidosis. Furthermore, this subtype exhibits intrinsic chemosensitivity and modality-specific projections—increasing firing during hypercapnic acidosis and selectively projecting to respiratory chemosensory but not motor centers, respectively. These findings show that serotonergic regulation of the respiratory chemoreflex is mediated by a specialized molecular subtype of 5HT neuron harboring unique physiological, biophysical, and hodological properties specified developmentally and demonstrate that the serotonergic system contains specialized modules contributing to its collective functional breadth

    Linking Genetically Defined Neurons to Behavior through a Broadly Applicable Silencing Allele

    Get PDF
    Tools for suppressing synaptic transmission gain power when able to target highly selective neuron subtypes, thereby sharpening attainable links between neuron type, behavior, and disease; and when able to silence most any neuron subtype, thereby offering broad applicability. Here, we present such a tool, RC::PFtox, that harnesses breadth in scope along with high cell-type selection via combinatorial gene expression to deliver tetanus toxin light chain (tox), an inhibitor of vesicular neurotransmission. When applied in mice, we observed cell-type-specific disruption of vesicle exocytosis accompanied by loss of excitatory postsynaptic currents and commensurately perturbed behaviors. Among various test populations, we applied RC::PFtox to silence serotonergic neurons, en masse or a subset defined combinatorially. Of the behavioral phenotypes observed upon en masse serotonergic silencing, only one mapped to the combinatorially defined subset. These findings provide evidence for separability by genetic lineage of serotonin-modulated behaviors; collectively, these findings demonstrate broad utility of RC::PFtox for dissecting neuron functions. © 2009 Elsevier Inc. All rights reserved
    corecore