129 research outputs found

    Mapping Northern Exposure With POLDER: Application for Circumpolar Methane Exchange

    Get PDF
    Three images types from POLDER airborne imagery, nadir looking multi-spectral bands, multiple view-angle images of the red band, and combined datasets, were used to classify land cover types at the NASA southern BOREAS study site in Saskatchewan, Canada. We found that combining multiple view-angle imagery with nadir viewing multi-spectral bands provided the greatest accuracy and discrimination of the largest number of inundated and non-inundated land cover classes. While the nadir looking multi-spectral band data correctly separated open water from other land cover classes it did not separate the inundated vegetated regions that define boreal wetlands. Multiple view-angle data could separate two upland vegetation types and open water but only one inundated vegetation type

    AVIRIS spectra of California wetlands

    Get PDF
    Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves

    Measuring dry plant residues in grasslands: A case study using AVIRIS

    Get PDF
    Grasslands, savannah, and hardwood rangelands are critical ecosystems and sensitive to disturbance. Approximately 20 percent of the Earth's surface are grasslands and represent 3 million ha. in California alone. Developing a methodology for estimating disturbance and the effects of cumulative impacts on grasslands and rangelands is needed to effectively monitor these ecosystems. Estimating the dry biomass residue remaining on rangelands at the end of the growing season provides a basis for evaluating the effectiveness of land management practices. The residual biomass is indicative of the grazing pressure and provides a measure of the system capacity for nutrient cycling since it represents the maximum organic matter available for decomposition, and finally, provides a measure of the erosion potential for the ecosystem. Remote sensing presents a possible method for measuring dry residue. However, current satellites have had limited application due to the coarse spatial scales (relative to the patch dynamics) and insensitivity of the spectral coverage to resolve dry plant material. Several hypotheses for measuring the biochemical constituents of dry plant material, particularly cellulose and lignin, using high spectral resolution sensors were proposed. The use of Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) to measure dry plant residues over an oak savannah on the eastern slopes of the Coast Range in central California was investigated and it was asked what spatial and spectral resolutions are needed to quantitatively measure dry plant biomass in this ecosystem

    Estimating Surface Soil Moisture in Simulated AVIRIS Spectra

    Get PDF
    Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential on the spectra general shape and albedo (Stoner and Baumgardner, 1981). Without moisture, the intrinsic or matrix reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, mineral types, including salts, and organic matter contents. The influence of moisture on soil reflectance can be isolated by comparing similar soils in a study of the effects that small differences in moisture content have on reflectance. However, without prior knowledge of the soil physical and chemical constituents within every pixel, it is nearly impossible to accurately attribute the reflectance variability in an image to moisture or to differences in the physical and chemical constituents in the soil. The effect of moisture on the spectra must be eliminated to use hyperspectral imagery for determining minerals and organic matter abundances of bare agricultural soils. Accurate soil mineral and organic matter abundance maps from air- and space-borne imagery can improve GIS models for precision farming prescription, and managing irrigation and salinity. Better models of soil moisture and reflectance will also improve the selection of soil endmembers for spectral mixture analysis

    Imaging Spectroscopic Analysis of Biochemical Traits for Shrub Species in Great Basin, USA

    Get PDF
    The biochemical traits of plant canopies are important predictors of photosynthetic capacity and nutrient cycling. However, remote sensing of biochemical traits in shrub species in dryland ecosystems has been limited mainly due to the sparse vegetation cover, manifold shrub structures, and complex light interaction between the land surface and canopy. In order to examine the performance of airborne imaging spectroscopy for retrieving biochemical traits in shrub species, we collected Airborne Visible Infrared Imaging Spectrometer—Next Generation (AVIRIS-NG) images and surveyed four foliar biochemical traits (leaf mass per area, water content, nitrogen content and carbon) of sagebrush (Artemesia tridentata) and bitterbrush (Purshia tridentata) in the Great Basin semi-desert ecoregion, USA, in October 2014 and May 2015. We examined the correlations between biochemical traits and developed partial least square regression (PLSR) models to compare spectral correlations with biochemical traits at canopy and plot levels. PLSR models for sagebrush showed comparable performance between calibration (R2: LMA = 0.66, water = 0.7, nitrogen = 0.42, carbon = 0.6) and validation (R2: LMA = 0.52, water = 0.41, nitrogen = 0.23, carbon = 0.57), while prediction for bitterbrush remained a challenge. Our results demonstrate the potential for airborne imaging spectroscopy to measure shrub biochemical traits over large shrubland regions. We also highlight challenges when estimating biochemical traits with airborne imaging spectroscopy data

    Applying Tafkaa For Atmospheric Correction of Aviris Over Coral Ecosystems In The Hawaiian Islands

    Get PDF
    Growing concern over the health of coastal ecosystems, particularly coral reefs, has produced increased interest in remote sensing as a tool for the management and monitoring of these valuable natural resources. Hyperspectral capabilities show promising results in this regard, but as yet remain somewhat hindered by the technical and physical issues concerning the intervening water layer. One such issue is the ability to atmospherically correct images over shallow aquatic areas, where complications arise due to varying effects from specular reflection, wind blown surface waves, and reflectance from the benthic substrate. Tafkaa, an atmospheric correction algorithm under development at the U.S. Naval Research Laboratory, addresses these variables and provides a viable approach to the atmospheric correction issue. Using imagery from the Advanced Visible InfraRed Imaging Spectrometer (AVIRIS) over two shallow coral ecosystems in the Hawai ian Islands, French Frigate Shoals and Kane ohe Bay, we first demonstrate how land-based atmospheric corrections can be limited in such an environment. We then discuss the input requirements and underlying algorithm concepts of Tafkaa and conclude with examples illustrating the improved performance of Tafkaa using the same AVIRIS images

    Canopy structural attributes derived from AVIRIS imaging spectroscopy data in a mixed broadleaf/conifer forest

    Get PDF
    There is a well-established need within the remote sensing community for improved estimation and understanding of canopy structure and its influence on the retrieval of leaf biochemical properties. The main goal of this research was to assess the potential of optical spectral information from NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to discriminate different canopy structural types. In the first phase, we assessed the relationships between optical metrics and canopy structural parameters obtained from LiDAR in terms of different canopy structural attributes (biomass (i.e., area under Vegetation Vertical Profile, VVPint), canopy height and vegetation complexity). Secondly, we identified and classified different âcanopy structural typesâ by integrating several structural traits using Random Forests (RF). The study area is a heterogeneous forest in Sierra National Forest in California (USA). AVIRIS optical properties were analyzed by means of several sets of variables, including single narrow band reflectance and 1st derivative, sub-pixel cover fractions, narrow-band indices, spectral absorption features, optimized normalized difference indices and Principal Component Analysis (PCA) components. Our results demonstrate that optical data contain structural information that can be retrieved. The first principal component, used as a proxy for albedo, was the most strongly correlated optical metric with vegetation complexity, and it also correlated well with biomass (VVPint) and height. In conifer forests, the shade fraction was especially correlated to vegetation complexity, while water-sensitive optical metrics had high correlations with biomass (VVPint). Single spectral band analysis results showed that correlations differ in magnitude and in direction, across the spectrum and by vegetation type and structural variable. This research illustrates the potential of AVIRIS to analyze canopy structure and to distinguish several structural types in a heterogeneous forest. Furthermore, RF using optical metrics derived from AVIRIS proved to be a powerful technique to generate maps of structural attributes. The results emphasize the importance of using the whole optical spectrum, since all spectral regions contributed to canopy structure assessment
    • …
    corecore