226 research outputs found

    Early Holocene Occupation at the West Lost River Site, Klamath County, Oregon

    Get PDF
    Excavations at the West Lost River Site (35KL972) provide new insights on early Holocene occupation of southwestern Oregon. The article focuses on the artifacts and specimens recovered from the site

    Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke

    Get PDF
    BACKGROUND: Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) are increased in the brain after experimental ischemic stroke in rats. These two proteases are involved with the degradation of the basal lamina and loss of stability of the blood brain barrier that occurs after ischemia and that is associated with thrombolytic therapy in ischemic stroke. Minocycline is a lipophilic tetracycline and is neuroprotective in several models of brain injury. Minocycline inhibits inflammation, apoptosis and extracellular matrix degradation. In this study we investigated whether delayed minocycline inhibits brain MMPs activated by ischemia in a model of temporary occlusion in Wistar rats. RESULTS: Both MMP-2 and MMP-9 were elevated in the ischemic tissue as compared to the contra-lateral hemisphere after 3 hours occlusion and 21 hours survival (p < 0.0001 for MMP-9). Intraperitoneal minocycline at 45 mg/kg concentration twice a day (first dose immediately after the onset of reperfusion) significantly reduced gelatinolytic activity of ischemia-elevated MMP-2 and MMP-9 (p < 0.0003). Treatment also reduced protein concentration of both enzymes (p < 0.038 for MMP-9 and p < 0.018 for MMP-2). In vitro incubation of minocycline in concentrations as low as 0.1 μg/ml with recombinant MMP-2 and MMP-9 impaired enzymatic activity and MMP-9 was more sensitive at lower minocycline concentrations (p < 0.05). CONCLUSION: Minocycline inhibits enzymatic activity of gelatin proteases activated by ischemia after experimental stroke and is likely to be selective for MMP-9 at low doses. Minocycline is a potential new therapeutic agent to acute treatment of ischemic stroke

    Effect of neutrophil depletion on gelatinase expression, edema formation and hemorrhagic transformation after focal ischemic stroke

    Get PDF
    BACKGROUND: While gelatinase (MMP-2 and -9) activity is increased after focal ischemia/reperfusion injury in the brain, the relative contribution of neutrophils to the MMP activity and to the development of hemorrhagic transformation remains unknown. RESULTS: Anti-PMN treatment caused successful depletion of neutrophils in treated animals. There was no difference in either infarct volume or hemorrhage between control and PMN depleted animals. While there were significant increases in gelatinase (MMP-2 and MMP-9) expression and activity and edema formation associated with ischemia, neutrophil depletion failed to cause any change. CONCLUSION: The main finding of this study is that, in the absence of circulating neutrophils, MMP-2 and MMP-9 expression and activity are still up-regulated following focal cerebral ischemia. Additionally, neutrophil depletion had no influence on indicators of ischemic brain damage including edema, hemorrhage, and infarct size. These findings indicate that, at least acutely, neutrophils are not a significant contributor of gelatinase activity associated with acute neurovascular damage after stroke

    An assessment of the role of the falx cerebri and tentorium cerebelli in the cranium of the cat (Felis silvestris catus)

    Get PDF
    © 2018 The Author(s). The falx cerebri and the tentorium cerebelli are two projections of the dura mater in the cranial cavity which ossify to varying degrees in some mammalian species. The idea that the ossification of these structures may be necessary to support the loads arising during feeding has been proposed and dismissed in the past, but never tested quantitatively. To address this, a biomechanical model of a domestic cat (Felis silvestris catus) skull was created and the material properties of the falx and tentorium were varied for a series of loading regimes incorporating the main masticatory and neck muscles during biting. Under these loading conditions, ossification of the falx cerebri does not have a significant impact on the stress in the cranial bones. In the case of the tentorium, however, a localized increase in stress was observed in the parietal and temporal bones, including the tympanic bulla, when a non-ossified tentorium was modelled. These effects were consistent across the different analyses, irrespective of loading regime. The results suggest that ossification of the tentorium cerebelli may play a minor role during feeding activities by decreasing the stress in the back of the skull

    Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats

    Get PDF
    BACKGROUND: Minocycline, a semi-synthetic tetracycline antibiotic, is an effective neuroprotective agent in animal models of cerebral ischemia when given in high doses intraperitoneally. The aim of this study was to determine if minocycline was effective at reducing infarct size in a Temporary Middle Cerebral Artery Occlusion model (TMCAO) when given at lower intravenous (IV) doses that correspond to human clinical exposure regimens. METHODS: Rats underwent 90 minutes of TMCAO. Minocycline or saline placebo was administered IV starting at 4, 5, or 6 hours post TMCAO. Infarct volume and neurofunctional tests were carried out at 24 hr after TMCAO using 2,3,5-triphenyltetrazolium chloride (TTC) brain staining and Neurological Score evaluation. Pharmacokinetic studies and hemodynamic monitoring were performed on minocycline-treated rats. RESULTS: Minocycline at doses of 3 mg/kg and 10 mg/kg IV was effective at reducing infarct size when administered at 4 hours post TMCAO. At doses of 3 mg/kg, minocycline reduced infarct size by 42% while 10 mg/kg reduced infarct size by 56%. Minocycline at a dose of 10 mg/kg significantly reduced infarct size at 5 hours by 40% and the 3 mg/kg dose significantly reduced infarct size by 34%. With a 6 hour time window there was a non-significant trend in infarct reduction. There was a significant difference in neurological scores favoring minocycline in both the 3 mg/kg and 10 mg/kg doses at 4 hours and at the 10 mg/kg dose at 5 hours. Minocycline did not significantly affect hemodynamic and physiological variables. A 3 mg/kg IV dose of minocycline resulted in serum levels similar to that achieved in humans after a standard 200 mg dose. CONCLUSIONS: The neuroprotective action of minocycline at clinically suitable dosing regimens and at a therapeutic time window of at least 4–5 hours merits consideration of phase I trials in humans in view of developing this drug for treatment of stroke

    Comparative cranial biomechanics in two lizard species: impact of variation in cranial design

    Get PDF
    Cranial morphology in lepidosaurs is highly disparate and characterised by the frequent loss or reduction of bony elements. In varanids and geckos, the loss of the postorbital bar is associated with changes in skull shape, but the mechanical principles underlying this variation remain poorly understood. Here, we sought to determine how the overall cranial architecture and the presence of the postorbital bar relate to the loading and deformation of the cranial bones during biting in lepidosaurs. Using computer-based simulation techniques, we compared cranial biomechanics in the varanid Varanus niloticus and the teiid Salvator merianae, two large, active foragers. The overall strain magnitude and distribution across the cranium were similar in the two species, despite lower strain gradients in V. niloticus. In S. merianae, the postorbital bar is important for resistance of the cranium to feeding loads. The postorbital ligament, which in varanids partially replaces the postorbital bar, does not affect bone strain. Our results suggest that the reduction of the postorbital bar impaired neither biting performance nor the structural resistance of the cranium to feeding loads in V. niloticus. Differences in bone strain between the two species might reflect demands imposed by feeding and non-feeding functions on cranial shape. Beyond variation in cranial bone strain related to species-specific morphological differences, our results reveal that similar mechanical behaviour is shared by lizards with distinct cranial shapes. Contrary to the situation in mammals, the morphology of the circumorbital region, calvaria and palate appears to be important for withstanding high feeding loads in these lizards

    Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interruption of flow through of cerebral blood vessels results in acute ischemic stroke. Subsequent breakdown of the blood brain barrier increases cerebral injury by the development of vasogenic edema and secondary hemorrhage known as hemorrhagic transformation (HT). Diabetes is a risk factor for stroke as well as poor outcome of stroke. The current study tested the hypothesis that diabetes-induced changes in the cerebral vasculature increase the risk of HT and augment ischemic injury.</p> <p>Methods</p> <p>Diabetic Goto-Kakizaki (GK) or control rats underwent 3 hours of middle cerebral artery occlusion and 21 h reperfusion followed by evaluation of infarct size, hemorrhage and neurological outcome.</p> <p>Results</p> <p>Infarct size was significantly smaller in GK rats (10 ± 2 vs 30 ± 4%, p < 0.001). There was significantly more frequent hematoma formation in the ischemic hemisphere in GK rats as opposed to controls. Cerebrovascular tortuosity index was increased in the GK model (1.13 ± 0.01 vs 1.34 ± 0.06, P < 0.001) indicative of changes in vessel architecture.</p> <p>Conclusion</p> <p>These findings provide evidence that there is cerebrovascular remodeling in diabetes. While diabetes-induced remodeling appears to prevent infarct expansion, these changes in blood vessels increase the risk for HT possibly exacerbating neurovascular damage due to cerebral ischemia/reperfusion in diabetes.</p

    Angiotensin receptor blockers and angiogenesis: clinical and experimental evidence

    Get PDF
    A B S T R A C T Angiotensin II type 1 receptor antagonists [ARBs (angiotensin receptor blockers)] are indicated for BP (blood pressure)-lowering, renal protection and cardioprotection in patients unable to tolerate ACEIs (angiotensin-converting enzyme inhibitors). A recent meta-analysis revealed an association between ARBs and tumour development, possibly due to enhancement of angiogenesis. However, published evidence is conflicting on the effects of ARBs on angiogenesis or the expansion of the existing vascular network. ARBs have been shown to exert primarily anti-angiogenic effects in basic science studies of cancer, retinopathy, peripheral artery disease and some models of cardiovascular disease. In animal and cellular models of myocardial infarction and stroke, however, ARB administration has been associated with robust increases in vascular density and improved recovery. The aim of the present review is to examine the angiogenic effects of ARBs in animal and cellular models of relevant disease states, including proposed molecular mechanisms of action of ARBs and the clinical consequences of ARB use

    Falls: A marker of preclinical Alzheimer disease: A cohort study protocol

    Get PDF
    INTRODUCTION: Progression to symptomatic Alzheimer disease (AD) occurs slowly over a series of preclinical stages. Declining functional mobility may be an early indicator of loss of brain network integration and may lead to an increased risk of experiencing falls. It is unknown whether measures of functional mobility and falls are preclinical markers of AD. The purpose of this study is to examine (1) the relationship between falls and functional mobility with AD biomarkers to determine when falls occur within the temporal progression to symptomatic Alzheimer disease, and (2) the attentional compared with perceptual/motor systems that underlie falls and functional mobility changes seen with AD. METHODS AND ANALYSIS: This longitudinal cohort study will be conducted at the Knight Alzheimer Disease Research Center. Approximately 350 cognitively normal participants (with and without preclinical AD) will complete an in-home visit every year for 4 years. During each yearly assessment, functional mobility will be assessed using the Performance Oriented Mobility Assessment, Timed Up and Go, and Timed Up and Go dual task. Data regarding falls (including number and severity) will be collected monthly by self-report and confirmed through interviews. This study will leverage ongoing neuropsychological assessments and neuroimaging (including molecular imaging using positron emission tomography and MRI) performed by the Knight Alzheimer Disease Research Center. Relationships between falls and biomarkers of amyloid, tau and neurodegeneration will be evaluated. ETHICS AND DISSEMINATION: This study was approved by the Washington University in St. Louis Institutional Review Board (reference number 201807135). Written informed consent will be obtained in the home prior to the collection of any study data. Results will be published in peer-reviewed publications and presented at national and international conferences. TRIAL REGISTRATION NUMBER: NCT04949529; Pre-results
    corecore