9 research outputs found
Self-Reporting Theranostic: Nano Tool for Arterial Thrombosis
Arterial thrombosis (AT) originates through platelet-mediated thrombus formation in the blood vessel and can lead to heart attack, stroke, and peripheral vascular diseases. Restricting the thrombus growth and its simultaneous monitoring by visualisation is an unmet clinical need for a better AT prognosis. As a proof-of-concept, we have engineered a nanoparticle-based theranostic (combined therapy and monitoring) platform that has the potential to monitor and restrain the growth of a thrombus concurrently. The theranostic nanotool is fabricated using biocompatible super-paramagnetic iron oxide nanoparticles (SPIONs) as a core module tethered with the anti-platelet agent Abciximab (ReoPro) on its surface. Our in vitro feasibility results indicate that ReoPro-conjugated SPIONS (Tx@ReoPro) can effectively prevent thrombus growth by inhibiting fibrinogen receptors (GPIIbIIIa) on the platelet surface, and simultaneously, it can also be visible through non-invasive magnetic resonance imaging (MRI) for potential reporting of the real-time thrombus status
Nanoimaging in cardiovascular diseases: Current state of the art
Nanotechnology has been integrated into healthcare system in terms of diagnosis as well as therapy. The massive impact of imaging nanotechnology has a deeper intervention in cardiology i.e. as contrast agents , to target vulnerable plaques with site specificity and in a theranostic approach to treat these plaques, stem cell delivery in necrotic myocardium, etc. Thus cardiovascular nanoimaging is not limited to simple diagnosis but also can help real time tracking during therapy as well as surgery. The present review provides a comprehensive description of the molecular imaging techniques for cardiovascular diseases with the help of nanotechnology and the potential clinical implications of nanotechnology for future applications
Varying effects of tyrosine kinase inhibitors on platelet function-A need for individualized CML treatment to minimize the risk for hemostatic and thrombotic complications?
Since their introduction, tyrosine kinase inhibitors (TKIs, eg, imatinib, nilotinib, dasatinib, bosutinib, ponatinib) have revolutionized the treatment of chronic myeloid leukemia (CML). However, long-term treatment with TKIs is associated with serious adverse events including both bleeding and thromboembolism. Experimental studies have shown that TKIs can cause platelet dysfunction. Herein, we present the first side-by-side investigation comparing the effects of currently used TKIs on platelet function and thrombin generation when used in clinically relevant concentrations. A flow cytometry multiparameter protocol was used to study a range of significant platelet activation events (fibrinogen receptor activation, alpha granule, and lysosomal exocytosis, procoagulant membrane exposure, and mitochondrial permeability changes). In addition, thrombin generation was measured in the presence of TKIs to assess the effects on global hemostasis. Results show that dasatinib generally inhibited platelet function, while bosutinib, nilotinib, and ponatinib showed less consistent effects. In addition to these general trends for each TKI, we observed a large degree of interindividual variability in the effects of the different TKIs. Interindividual variation was also observed when blood from CML patients was studied ex vivo with whole blood platelet aggregometry, free oscillation rheometry (FOR), and flow cytometry. Based on the donor responses in the side-by-side TKI study, a TKI sensitivity map was developed. We propose that such a sensitivity map could potentially become a valuable tool to help in decision-making regarding the choice of suitable TKIs for a CML patient with a history of bleeding or atherothrombotic disease.Funding Agencies|Lions Forskningsfond; ALF Grants, Region Ostergotland; Hjart-Lungfonden [20170318]; Science and Engineering Research Board</p
Self-Reporting Theranostic: Nano Tool for Arterial Thrombosis
Arterial thrombosis (AT) originates through platelet-mediated thrombus formation in the blood vessel and can lead to heart attack, stroke, and peripheral vascular diseases. Restricting the thrombus growth and its simultaneous monitoring by visualisation is an unmet clinical need for a better AT prognosis. As a proof-of-concept, we have engineered a nanoparticle-based theranostic (combined therapy and monitoring) platform that has the potential to monitor and restrain the growth of a thrombus concurrently. The theranostic nanotool is fabricated using biocompatible super-paramagnetic iron oxide nanoparticles (SPIONs) as a core module tethered with the anti-platelet agent Abciximab (ReoPro) on its surface. Our in vitro feasibility results indicate that ReoPro-conjugated SPIONS (Tx@ReoPro) can effectively prevent thrombus growth by inhibiting fibrinogen receptors (GPIIbIIIa) on the platelet surface, and simultaneously, it can also be visible through non-invasive magnetic resonance imaging (MRI) for potential reporting of the real-time thrombus status.Funding Agencies|Shrimati Shetty, Abhishek Sharu and Ranjini Chowdhury.</p
Probing ADP Induced Aggregation Kinetics During Platelet-Nanoparticle Interactions: Functional Dynamics Analysis to Rationalize Safety and Benefits.
Platelets, one of the most sensitive blood cells, can be activated by a range of external and internal stimuli including physical, chemical, physiological, and/or non-physiological agents. Platelets need to respond promptly during injury to maintain blood hemostasis. The time profile of platelet aggregation is very complex, especially in the presence of the agonist adenosine 5'-diphosphate (ADP), and it is difficult to probe such complexity using traditional linear dose response models. In the present study, we explored functional analysis techniques to characterize the pattern of platelet aggregation over time in response to nanoparticle induced perturbations. This has obviated the need to represent the pattern of aggregation by a single summary measure and allowed us to treat the entire aggregation profile over time, as the response. The modeling was performed in a flexible manner, without any imposition of shape restrictions on the curve, allowing smooth platelet aggregation over time. The use of a probabilistic framework not only allowed statistical prediction and inference of the aggregation signatures, but also provided a novel method for the estimation of higher order derivatives of the curve, thereby allowing plausible estimation of the extent and rate of platelet aggregation kinetics over time. In the present study, we focused on the estimated first derivative of the curve, obtained from the platelet optical aggregometric profile over time and used it to discern the underlying kinetics as well as to study the effects of ADP dosage and perturbation with gold nanoparticles. In addition, our method allowed the quantification of the extent of inter-individual signature variations. Our findings indicated several hidden features and showed a mixture of zero and first order kinetics interrupted by a metastable zero order ADP dose dependent process. In addition, we showed that the two first order kinetic constants were ADP dependent. However, we were able to perturb the overall kinetic pattern using gold nanoparticles, which resulted in autocatalytic aggregation with a higher aggregate mass and which facilitated the aggregation rate.We also sincerely thank SERB, India (grant number YSS/2015/002101) for supporting this research. HP acknowledges his fellowship (Jr, B1) at Wolfson College, University of Cambridge (UK), EU H2020 Marie Sklodowska-Curie Individual Fellowship (Grant no. 706694), MIIC Seed Grant at Linkoping University (LiU), Sweden
Rational Nanotoolbox with Theranostic Potential for Medicated Pro-Regenerative Corneal Implants
Cornea diseases are a leading cause of blindness and the disease burden is exacerbated by the increasing shortage around the world for cadaveric donor corneas. Despite the advances in the field of regenerative medicine, successful transplantation of laboratory‐made artificial corneas is not fully realized in clinical practice. The causes of failure of such artificial corneal implants are multifactorial and include latent infections from viruses and other microbes, enzyme overexpression, implant degradation, extrusion or delayed epithelial regeneration. Therefore, there is an urgent unmet need for developing customized corneal implants to suit the host environment and counter the effects of inflammation or infection, which are able to track early signs of implant failure in situ. This work reports a nanotoolbox comprising tools for protection from infection, promotion of regeneration, and noninvasive monitoring of the in situ corneal environment. These nanosystems can be incorporated within pro‐regenerative biosynthetic implants, transforming them into theranostic devices, which are able to respond to biological changes following implantation.Funding agencies: EU H2020 Marie Sklodowska-Curie Individual Fellowship [706694]; MIIC Strategic Postdoc Grant; MIIC Seed Grant at Linkoping University (LiU), Sweden</p
Innate Immune Invisible Ultrasmall Gold NanoparticlesFramework for Synthesis and Evaluation
[Image: see text] Nanomedicine is seen as a potential central player in the delivery of personalized medicine. Biocompatibility issues of nanoparticles have largely been resolved over the past decade. Despite their tremendous progress, less than 1% of applied nanosystems can hit their intended target location, such as a solid tumor, and this remains an obstacle to their full ability and potential with a high translational value. Therefore, achieving immune-tolerable, blood-compatible, and biofriendly nanoparticles remains an unmet need. The translational success of nanoformulations from bench to bedside involves a thorough assessment of their design, compatibility beyond cytotoxicity such as immune toxicity, blood compatibility, and immune-mediated destruction/rejection/clearance profile. Here, we report a one-pot process-engineered synthesis of ultrasmall gold nanoparticles (uGNPs) suitable for better body and renal clearance delivery of their payloads. We have obtained uGNP sizes of as low as 3 nm and have engineered the synthesis to allow them to be accurately sized (almost nanometer by nanometer). The synthesized uGNPs are biocompatible and can easily be functionalized to carry drugs, peptides, antibodies, and other therapeutic molecules. We have performed in vitro cell viability assays, immunotoxicity assays, inflammatory cytokine analysis, a complement activation study, and blood coagulation studies with the uGNPs to confirm their safety. These can help to set up a long-term safety-benefit framework of experimentation to reveal whether any designed nanoparticles are immune-tolerable and can be used as payload carriers for next-generation vaccines, chemotherapeutic drugs, and theranostic agents with better body clearance ability and deep tissue penetration
Innate Immune Invisible Ultrasmall Gold Nanoparticles-Framework for Synthesis and Evaluation
Nanomedicine is seen as a potential central player in the delivery of personalized medicine. Biocompatibility issues of nanoparticles have largely been resolved over the past decade. Despite their tremendous progress, less than 1% of applied nanosystems can hit their intended target location, such as a solid tumor, and this remains an obstacle to their full ability and potential with a high translational value. Therefore, achieving immune-tolerable, blood-compatible, and biofriendly nanoparticles remains an unmet need. The translational success of nanoformulations from bench to bedside involves a thorough assessment of their design, compatibility beyond cytotoxicity such as immune toxicity, blood compatibility, and immune-mediated destruction/rejection/clearance profile. Here, we report a one-pot process-engineered synthesis of ultrasmall gold nanoparticles (uGNPs) suitable for better body and renal clearance delivery of their payloads. We have obtained uGNP sizes of as low as 3 nm and have engineered the synthesis to allow them to be accurately sized (almost nanometer by nanometer). The synthesized uGNPs are biocompatible and can easily be functionalized to carry drugs, peptides, antibodies, and other therapeutic molecules. We have performed in vitro cell viability assays, immunotoxicity assays, inflammatory cytokine analysis, a complement activation study, and blood coagulation studies with the uGNPs to confirm their safety. These can help to set up a long-term safety-benefit framework of experimentation to reveal whether any designed nanoparticles are immune-tolerable and can be used as payload carriers for next-generation vaccines, chemotherapeutic drugs, and theranostic agents with better body clearance ability and deep tissue penetration