142 research outputs found

    Aplikasi Dosen dan Karyawan: Membantu Mengelola Data Dosen dan Karyawan yang Ada di DAUH FTI

    Full text link
    Divisi Administrasi Umum dan Humas (DAUH), Fakultas Teknologi Industri Universitas Islam Indonesia saat ini menyimpan data dosen dan karyawan menggunakan Excel, belum ada aplikasi yang dapat membantu penyimpanan data dengan mudah dan fleksibel, untuk itu akan dibuat sebuah aplikasi yang akan membantu DAUH dalam mengelola data dosen dan karyawan yang ada di FTI UII. Aplikasi bernama DOKAR kependekan dari Dosen dan Karyawan, sebuah aplikasi yang akan memudahkan pekerjaan DAUH dalam menyimpan data pegawai yang berkerja di Fakultas Teknologi Industri UII, Aplikasi ini dikembangkan untuk menggantikan data yang sekarang masih disimpan secara manual di file Excel

    Ecosystem response persists after a prolonged marine heat wave

    Get PDF
    Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014–2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state."This project was made possible by the Gulf Watch Alaska (GWA) long-term ecosystem monitoring program with financial support by the Exxon Valdez Oil Spill Trustee Council (EVOSTC)."Ye

    Crystal and Molecular Structure and DFT Calculations of the Steroidal Oxime 6E-Hydroximino-androst-4-ene-3,17-dione (C_{19}H_{25}NO_{3}) a Molecule with Antiproliferative Activity

    Get PDF
    The single crystal X-ray structure of the novel steroid derivative, 6E-hydroximino-androst-4-ene-3,17-dione (C_{19}H_{25}NO_{3}) (code name RB-499), possessing antiproliferative activity against various cell lines is presented. The analysis produced the following results: chemical formula C_{19}H_{25}NO_{3}; Mr = 315.40; crystals are orthorhombic space group P2_{1}2_{1}2_{1} with Z = 4 molecules per unit cell with a = 6.2609(2), b = 12.5711(4), c = 20.0517(4) Å,Vc = 1578.18(7) Å3, crystal density Dc = 1.327 g/cm^{3}. Structure determination was performed by direct methods, Fourier and full-matrix least-squares refinement. Hydrogens were located in the electron density and refined in position with isotropic thermal parameters. The final R-index was 0.0324 for 3140 reflections with I > 2σ and 308 parameters. The Absolute Structure Parameter − 0.07(5) confirms the correct allocation of the absolute configuration. The presence of the double bond C=O at position 3 in Ring A has caused a distortion from the usual chair conformation and created an unusual distorted sofa conformation folded across an approximate m-plane through C(1)–C(4). Ring B is a distorted chair, its conformation being influenced by the presence of the C(6)=N(6)–O(6)H group in position 6. Ring C is a symmetrical chair. Ring D exhibits both a distorted mirror symmetry conformation [influenced by the C(17)=O(17) group] and a distorted twofold conformation. DFT calculations indicated some degree of flexibility in rings A, C and D with ring A showing the greatest variation in torsion angles. The crystal packing is governed by H-bonds involving O(3), O(6) and O(17). DFT calculations of bond distances and angles, optimized at the B3LYP/6–31++G(d,p) level, were in good agreement with the X-ray structure

    Crystal and Molecular Structure and DFT Calculations of the Steroidal Oxime 6E-Hydroximino-androst-4-ene-3,17-dione (C<sub>19</sub>H<sub>25</sub>NO<sub>3</sub>) a Molecule with Antiproliferative Activity

    Get PDF
    The single crystal X-ray structure of the novel steroid derivative, 6E-hydroximino-androst-4-ene-3,17-dione ( C19H25NO3) (code name RB-499), possessing antiproliferative activity against various cell lines is presented. The analysis produced the following results: chemical formula C19H25NO3; Mr = 315.40; crystals are orthorhombic space group P212121 with Z = 4 molecules per unit cell with a = 6.2609(2), b = 12.5711(4), c = 20.0517(4) Å,Vc = 1578.18(7) Å3, crystal density Dc = 1.327 g/cm³. Structure determination was performed by direct methods, Fourier and full-matrix least-squares refinement. Hydrogens were located in the electron density and refined in position with isotropic thermal parameters. The final R-index was 0.0324for 3140 reflections with I > 2σ and 308 parameters. The Absolute Structure Parameter − 0.07(5) confirms the correct allocation of the absolute configuration. The presence of the double bond C=O at position 3 in Ring A has caused a distortion from the usual chair conformation and created an unusual distorted sofa conformation folded across an approximate m-plane through C(1)–C(4). Ring B is a distorted chair, its conformation being influenced by the presence of the C(6)=N(6)–O(6)H group in position 6. Ring C is a symmetrical chair. Ring D exhibits both a distorted mirror symmetry conformation [influenced by the C(17)=O(17) group] and a distorted twofold conformation. DFT calculations indicated some degree of flexibility in rings A, C and D with ring A showing the greatest variation in torsion angles. The crystal packing is governed by H-bonds involving O(3), O(6) and O(17). DFT calculations of bond distances and angles, optimized at the B3LYP/6–31++G(d,p) level, were in good agreement with the X-ray structure

    Wind, Waves, and Wing Loading: Morphological Specialization May Limit Range Expansion of Endangered Albatrosses

    Get PDF
    Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp.) inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata) are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift) compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis), which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to understanding past and potentially predicting future distributional limits of albatrosses globally, particularly with respect to climate change effects on basin-scale and regional wind fields

    Studies of colossal magnetoresistive oxides with radioactive isotopes

    Get PDF
    We propose to study Colossal Magnetoresistive (CMR) oxides with several nuclear techniques, which use radioactive elements at ISOLDE. Our aim is to provide local and element selective information on some of the doping mechanisms that rule electronic interactions and magnetoresistance, in a complementary way to the use of conventional characterisation techniques. Three main topics are proposed: \\ \\ a) Studies of local [charge and] structural modifications in antiferromagnetic LaMnO3+δ_{3+ \delta} and La1x_{1-x}Rx_{x}MnO3_{3} with R=Ca and Cd, doped ferromagnetic systems with competing interactions: - research on the lattice site and electronic characterisation of the doping element. \\ \\ b) Studies of self doped Lax_{x}R1x_{1-x}MnO3+δ_{3+\delta} systems, with oxygen and cation non-stoichiometry: -learning the role of defects in the optimisation of magnetoresistive properties. \\ \\ c) Probing the disorder and quenched random field effects in the vicinity of the charge or orbital Ordered/Ferromagnetic phase instability: - Investigating the local environment of ions at the Mn site, which trigger the ferromagnetic phase. Our approach to study these problems, combines complementary techniques such as Perturbed Angular Correlation, Emission Channeling and Electrical/Magnetic Measurements in pellets, single crystals and high quality thin films of CMR oxides doped with radioactive isotopes. Preliminary results obtained in La Cd MnO3+x_{3+x} pellets and thin films implanted with 111m^{111m}Cd are also presented

    Identification of marine Important Bird and Biodiversity Areas for penguins around the South Shetland Islands and South Orkney Islands

    Get PDF
    Aim: To provide a method of analysing penguin tracking data to identify priority at-sea areas for seabird conservation (marine IBAs), based on pre-existing approaches for flying seabirds but revised according to the specific ecology of Pygoscelis penguin species. Location: Waters around the Antarctic Peninsula, South Shetland and South Orkney Archipelagos (FAO Subareas 48.1 and 48.2) Methods: We made key improvements to the pre-existing protocol for identifying marine IBAs that include refining the track interpolation method, and revision of parameters for the kernel analysis (smoothing factor and utilization distribution) using sensitivity tests. We applied the revised method to 24 datasets of tracking data on penguins (three species, seven colonies and three different breeding stages – incubation, brood and crèche). Results: We identified 5 new marine IBAs for seabirds in the study area, estimated to hold ca. 600,000 adult penguins. Main conclusions: The results demonstrate the efficacy of a new method for the designation of a network of marine IBAs in Antarctic waters for penguins based on tracking data, which can contribute to an evidence-based, precautionary, management framework for krill fisheries
    corecore