4 research outputs found
Tillage-based nutrient management practices for sustaining productivity and soil health in the soybean-wheat cropping system in Vertisols of the Indian semi-arid tropics
To achieve higher crop production in a soybean-wheat cropping system, comprehensive knowledge of soil fertility status and its variability is crucial. However, a significant gap exists between the potential and actual productivity of this system in the Vertisols of Indian semi-arid tropics. Therefore, 2 years of field research were conducted to investigate how different crop management practices affect soil fertility in this cropping system. The trial was conducted using a randomized complete block design (RCBD) with five crop management practices: CAO (conservation tillage + organic nutrient and weed management), CAC (conservation tillage + chemical nutrient and weed management), CTC (conventional tillage + chemical nutrient and weed management), OCT (conventional tillage + organic nutrient and weed management), and PoPs (package of practices). Results showed that CAO significantly (p < 0.05) increased soil organic C (6.8 g kg−1), available N (129.5 mg kg−1), P (11.0 mg kg−1), K (232.6 mg kg−1), Fe (9.17 mg kg−1), and Mn (10.48 mg kg−1) at topsoil (0–15 cm) and deeper layers (15–60 cm). In contrast, CAC had significantly (p < 0.05) higher soil availability of Ca (5,072 mg kg−1) and Mg (901 mg kg−1) and Cu (0.84 mg kg−1). On the other side, PoPs resulted in the highest S (10.05 mg kg−1) and Zn (0.85 mg kg−1) availability in the topsoil. Our results evidently suggested S and Zn availability as key indicators of soil health sustenance in the present agroecosystem. Notably, CAC had significantly (p < 0.05) higher system productivity (4.62 t ha−1) than the other treatments, showing a 14.0, 6.3, and 18.2% increase over CAO, CTC, and OCT, respectively. Based on the results, it is recommended that CAC is a better option for achieving higher system productivity, while CAO is the best option for ensuring long-term sustainability of soil fertility. The findings of this study could be useful for farmers and agricultural researchers in designing efficient crop management practices to improve the productivity and sustainability of soybean-wheat cropping system in arid to semiarid ecology
Bioprospecting of the <i>Telekia speciosa</i>: Uncovering the Composition and Biological Properties of Its Essential Oils
The essential oils (EOs) of Telekia speciosa, a perennial plant native to southeastern Europe and Asia Minor, were analyzed for their composition and biological properties. T. speciosa is an invasive plant in Poland; however, its beauty prompts gardeners to cultivate the plants. T. speciosa serves as a valuable source of nectar and pollen for honey bees. Our results revealed more than 150 compounds in the flower, leaf, and root EOs. Major constituents found in the essential oils from the roots included isoalantolacton (46.2%) and from the flowers nerol (11.9%), while from the leaves, they included (E)-nerolidol (10.1%). T. speciosa flower EO showed significant cytotoxicity against A375 cells, with IC50 values of 7.2, 5.1, and 3.4 μg/mL referring to 24, 48, and 72 h, respectively, indicating its potential as a natural cytotoxic agent. The antimicrobial activity of the essential oils against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922 was also investigated. The essential oils from the flowers and leaves of T. speciosa demonstrated higher inhibitory activity against S. aureus (MIC: 5.9–7.8 μL/mL) and E. coli (MIC: 7.8–11.7 μL/mL) than the essential oil isolated from the roots of the plant (MICs 31.3 and 62.5 μL/mL against S. aureus and E. coli, respectively)
Groundwater Evaporation Ponds: A Viable Option for the Management of Shallow Saline Waterlogged Areas
The province of Punjab is the main food basket of India. In recent years, many regions of Punjab are facing acute waterlogging problems and increased secondary salinity, which have negative impacts on food security of the nation. In particular, these problems are more pronounced in the Muktsar district of Punjab. The observed groundwater levels trend between 2005 and 2011 implies that groundwater levels are coming towards the land surface at the rate of 0.5 m/year in Lambi and Malout blocks. In this study, a groundwater flow model was constructed using MODFLOW to understand the groundwater table dynamics and to test the groundwater evaporation ponds to draw down the groundwater levels in the waterlogging areas of Muktsar district. The predicted flow model results indicate that groundwater levels could be depleted at the rate of 0.3 m/year between 2012 and 2018 after the construction of Groundwater Evaporation Ponds (GEP). In addition, the constructed ponds can be used for aquaculture that generates additional income. The proposed GEP method may be a promising tool and suitable for the reduction of waterlogging in any region if there is no proper surface drainage, and also for enhancement of agricultural production that improves the social and economic status of the farming community