32 research outputs found

    Polanyi Evaluation of Adsorptive Capacities of Commercial Activated Carbons

    Get PDF
    Commercial activated carbons from Calgon (207C and OVC) and Cabot Norit (RB2 and GCA 48) were evaluated for use in spacecraft trace contaminant control filters. The Polanyi potential plots of the activated carbons were compared using to those of Barnebey-Cheney Type BD, an untreated activated carbon with similar properties as the acid-treated Barnebey-Sutcliffe Type 3032 utilized in the TCCS. Their adsorptive capacities under dry conditions were measured in a closed loop system and the sorbents were ranked for their ability to remove common VOCs found in spacecraft cabin air. This comparison suggests that these sorbents can be ranked as GCA 48 207C, OVC RB2 for the compounds evaluated

    Mobile analysis of railway traffic safety

    Get PDF
    The paper presents a universal and extremely simple method for studying railway traffic safety, which enables the measurement of safety-related aspects to be conducted with reference to both infrastructure and rolling stock at the same time. The method proposed in the article is an attempt to face up to the challenge of the aforementioned constraint, enabling measurements of characteristics of the railway line infrastructure and of the rolling stock by means of common accelerometers installed in mobile phones. Result obtained illustrates accelerations recorded in three axes. Studying average characteristics for the same train set, one can reveal anomalies related to the track or the rolling stock condition

    Hygrometer for Detecting Water in Partially Enclosed Volumes

    Get PDF
    A portable hygrometer has been devised to implement a pre-existing technique for detecting water trapped in partially enclosed volumes that may be difficult to reach and cannot be examined directly. The technique is based on the fact that eventually the air in such a volume becomes saturated or nearly so. The technique is straightforward: One measures the relative humidity and temperature of both the ambient air and a sample of air from the enclosed volume. If the relative humidity of the sample is significantly greater than that of the ambient air and/or if the sample is at or close to the dew point, then it can be concluded that water is trapped in the volume. Of course, the success of this technique depends on the existence of an access hole through which one can withdraw some air from the enclosed volume

    Green Solvents for Precision Cleaning

    Get PDF
    Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the moderate processing conditions of 323 K, 13.8 MPa, 30 min and 750 rpm

    Evaluating the Adsorptive Capabilites of Chemsorb 1000 and Chemsorb 1425

    Get PDF
    The removal of trace contaminants from spacecraft cabin air is necessary for crew health and comfort during long duration space exploration missions. The air revitalization technologies used in these future exploration missions will evolve from current ISS ISS State-of-Art (SOA) and is being designed and tested by the Advanced Exploration Systems (AES) Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project. The ARREM project is working to mature optimum atmosphere revitalization and environmental monitoring system architectures to enable exploration beyond Lower Earth Orbit (LEO). The Air Revitalization Lab at KSC is one of six NASA field centers participating in the ARREM that specializes in adsorbent and catalyst characterization with simulated spacecraft gas streams using combinations of pressure, O2 partial pressure, CO2 partial pressure, and humidity that are representative of a range of anticipated cabin atmospheric conditions and loads. On board ISS, the Trace Contaminant Control Subassembly (TCCS) provides active control of trace contaminants from the cabin atmosphere utilizing physical adsorption, thermal catalytic oxidation, and chemical adsorption processes. High molecular weight contaminants and ammonia (NH3) are removed a granular activated carbon treated with approx. 10% by weight phosphoric acid (H3PO4) (B-S Type 3032 46 mesh), which is expendable and is periodically refurbished. The Type 3032 granular activated carbon bed is no longer commercially available and therefore it is important to characterize the efficiency and capacity of commercially available NH3 sorbents. This paper describes the characterization of two Molecular Products LTD activated carbons: Chemsorb 1000 and Chemsorb 1425. Untreated activated carbons (e.g. Chemsorb 1000) remove contaminants by physisorption, which concentrates the contaminant within the pores of the carbon while letting air to pass through the sorbent4. Low molecular weight or polar gases (e.g. HCl, SO2, formaldehyde, and NH3) are not removed by physisorption and typically require chemisorption for removal. Treated activated carbons (e.g. Chemsorb 1425) are impregnated with a a chemical agent (e.g. phosphoric acid) that reacts with those gases, converting them to solids or salts within the carbon and removes them from the air stream. This process occurs via neutralization or catalysis reactions and adsorption capacity is exhaustedwhen the available impregnated chemicals are consumed. Moisture affects removal performance since adsorption sites within the pores are filled with water. The performance of impregnated carbons may be enhanced by moisture content because the mechanisms of contaminant removal are chemical reactions that occur in reagents contained within the pores. The adsorptive capacity data (mol/kg) of Chemsorb 1000 and 1425 for gas mixtures (ethanol, acetone, toluene, acetaldehyde, dichloromethane, and xylene) was measured with 40% relative humidity at 23 deg C air temperature. The adsorptive capacity data (mol/kg) of Chemsorb 1425 was measured using NH3 gas streams

    Final Report on the Detection of Green Monopropellants

    Get PDF
    In 2014, National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) funded a project titled "Familiarization and Detection of Green Monopropellants" utilizing Independent Research and Technology Development (IR&TD) and Center Innovation Fund (CIF) funding. The purpose of the project was to evaluate methods of detection for ammonium dinitramide (ADN) and hydroxylammonium nitrate (HAN). An Engineering Services Contract (ESC) task order was created with the scope of evaluation of several methods of detecting ADN- and HAN-based propellants, as well as development of methods for detection. Detection methods include developed methods such as colorimetric indicating absorbent socks, and commercial-off-the- shelf (COTS) units for ammonia detection. An additional goal of the task order was for ESC to become familiar with ADN's and HAN's material properties and material compatibility. Two approaches were initially investigated as possible methods for the detection of HAN (or AFM315E) and ADN (or LMP-103S). These approaches were colorimetric analysis and instrumentation-based COTS vapor sensors utilization. Initial testing showed that the relatively non-existent vapor pressure of the AF-M315E (of which HAN is a major component) propellant would make the use of COTS sensors difficult for real-time area monitoring of HAN; a small response was detected through the use of active COTS sensors, including the RAE Systems MultiRAE Lite and Drager X-act (registered) 5000, but the levels detected were below the threshold limit value for the toxic gas ammonia. Therefore, a detection system ased upon a colorimetric indicator impregnated into an absorbent material was developed. Preliminary analysis (ESC-245-FDG-001) identified a particularly outstanding candidate as a colorimetric indicator for the detection of the presence of AF-M315E in the form of a Methyl Red (Basic) indicator. Materials impregnated with this indicator exhibit significant color change and the materials are not susceptible to interference from exposure to water or carbon dioxide. The completed detection system for HAN/AF-M315E consists of absorbent socks packed with Fisher Universal Spill Absorbent capable of absorbing and containing any propellant spills that they come into contact with along with indicating wipes. The absorbent socks are also chemically treated with a Methyl Red (Basic) indicator solution to provide the end user with a visual indication that a leak has occurred and proper protective precautions must be undertaken. An added benefit of this detection system is that the absorbent socks should neutralize/absorb any commodity that it comes into contact with (until saturation is reached). Additional adsorbent socks can be deployed until a color change is not seen, indicating that the HAN/AF-M315E contamination has been contained. The indicating wipes provide the user the opportunity to wipe surfaces to determine if there is any HAN/AF-M315E or HAN/AFM315E residue present. The wipes should allow the detection of fuel levels that may be too small to detect with the absorbent socks. The development of a detection system for the ADN/LMP-103S focused on the use of various COTS sensors used as real-time area monitoring devices and personal dosimeters. These COTS based sensor systems were of several different types, including both actively pumped and diffusion-based passive systems, as well as a "rope"-type chemical sensing cable. The results highlighted some of the major differences between the two monopropellants undergoing evaluation. Unlike HAN, ADN (which is the major constituent of LMP-103S) exhibits a much more volatile nature in comparison to AF-M315E. In fact, testing showed that a large percentage of the fuel was lost during the sampling measurement (greater than 10 percent by mass); although this testing cannot tell if the volatile component is the ADN itself or another component of the monopropellant solution. Not surprisingly, all four of the procured vapor-based COTS sensors showed positive results when exposed to solutions of the LMP-103S (ESC-245-FDG-002). The completed detection system for ADN/LMP-103S consists of a combination of two of the tested COTS sensor systems, the RAE Systems MultiRAE Lite and the BW Technologies GasAlert Extreme. These systems are meant to be used in conjunction with one another, which allows for the end-user to have both real-time area monitoring (MultiRAE Lite) as well as a personal dosimeter device (GasAlert Extreme) which can be worn as additional personal protective equipment. An stainless steel extension wand was fabricated and included in the detection system for the MultiRAE Lite to allow for more remote sensing, and connects via the active pumping inlet of the sensor. As stated, the final results of this testing resulted in the production of two "kits" which can be used for the detection of HAN/AF-M315E and ADN/LMP-103s (ESC-245-FDG-003)

    Gradient chitosan hydrogels modified with graphene derivatives and hydroxyapatite : physiochemical properties and initial cytocompatibility evaluation

    Get PDF
    In this study, we investigated preparation of gradient chitosan-matrix hydrogels through a novel freezing&ndash;gelling&ndash;thawing method. The influence of three types of graphene family materials (GFM), i.e., graphene oxide (GO), reduced graphene oxide (rGO), and poly(ethylene glycol) grafted graphene oxide (GO-PEG), as well as hydroxyapatite (HAp) on the physicochemical and biological properties of the composite hydrogels was examined in view of their potential applicability as tissue engineering scaffolds. The substrates and the hydrogel samples were thoroughly characterized by X-ray photoelectron spectroscopy, X-ray diffractometry, infrared spectroscopy, digital and scanning electron microscopy, rheological and mechanical analysis, in vitro chemical stability and bioactivity assays, as well as initial cytocompatibility evaluation with human umbilical cord Wharton&rsquo;s jelly mesenchymal stem cells (hUC-MSCs). We followed the green-chemistry approach and avoided toxic cross-linking agents, using instead specific interactions of our polymer matrix with tannic acid, non-toxic physical cross-linker, and graphene derivatives. It was shown that the most promising are the gradient hydrogels modified with GO-PEG and HAp

    Evaluating the Adsoptive Capacities of Chemsorb 1000 and Chemsorb 1425

    Get PDF
    The Air Revitalization Lab at KSC tested Chemsorb 1000 and 1425, two candidate sorbents for use in future air revitalization technologies being evaluated by the ARREM project. Chemsorb 1000 and 1425 are granular coconut-shell activated carbon sorbents produced by Molecular Products, Inc. that may be used in the TCCS. Chemsorb 1000 is a high grade activated carbon for organic vapor adsorption. In contrast, Chemsorb 1425 is a high-grade impregnated activated carbon for adsorption of airborne ammonia and amines. Chemsorb 1000 was challenged with simulated spacecraft gas streams in order to determine its adsorptive capacities for mixtures of volatile organics compounds. Chemsorb 1425 was challenged with various NH3 concentrations to determine its adsorptive capacity

    Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    Get PDF
    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems
    corecore