35 research outputs found

    Resveratrol Inhibits Cancer Cell Metabolism by Down Regulating Pyruvate Kinase M2 via Inhibition of Mammalian Target of Rapamycin

    Get PDF
    Metabolism of cancer cells with pyruvate kinase M2 (PKM2) at its centre stage has assumed a prime significance in cancer research in recent times. Cancer cell metabolism, characterized by enhanced glucose uptake, production of lactate and anabolism is considered an ideal target for therapeutic interventions. Expression of PKM2 switches metabolism in favor of cancer cells, therefore, the present study was designed to investigate the hitherto unknown effect of resveratrol, a phytoalexin, on PKM2 expression and resultant implications on cancer metabolism. We observed that resveratrol down-regulated PKM2 expression by inhibiting mTOR signaling and suppressed cancer metabolism, adjudged by decreased glucose uptake, lactate production (aerobic glycolysis) and reduced anabolism (macromolecule synthesis) in various cancer cell lines. A contingent decrease in intracellular levels of ribose-5-phosphate (R5P), a critical intermediate of pentose phosphate pathway, accounted for a reduced anabolism. Consequently, the state of suppressed cancer metabolism resulted in decreased cellular proliferation. Interestingly, shRNA-mediated silencing of PKM2 inhibited glucose uptake and lactate production, providing evidence for the critical role of PKM2 and its mediation in the observed effects of resveratrol on cancer metabolism. Further, an over-expression of PKM2 abolished the observed effects of resveratrol, signifying the role of PKM2 downregulation as a critical function of resveratrol. The study reports a novel PKM2-mediated effect of resveratrol on cancer metabolism and provides a new dimension to its therapeutic potential

    A Novel Classification of Lung Cancer into Molecular Subtypes

    Get PDF
    The remarkably heterogeneous nature of lung cancer has become more apparent over the last decade. In general, advanced lung cancer is an aggressive malignancy with a poor prognosis. The discovery of multiple molecular mechanisms underlying the development, progression, and prognosis of lung cancer, however, has created new opportunities for targeted therapy and improved outcome. In this paper, we define “molecular subtypes” of lung cancer based on specific actionable genetic aberrations. Each subtype is associated with molecular tests that define the subtype and drugs that may potentially treat it. We hope this paper will be a useful guide to clinicians and researchers alike by assisting in therapy decision making and acting as a platform for further study. In this new era of cancer treatment, the ‘one-size-fits-all’ paradigm is being forcibly pushed aside—allowing for more effective, personalized oncologic care to emerge

    The evaluation of acoustic characteristic performance on natural sound absorbing materials from cogon grass waste

    Get PDF
    In the past few decades, synthetic fibers are been used widely in the field of sound absorption due to their superior characteristics such as durable and chemical resistant. However, there are several disadvantages of synthetic fibers such as non-biodegradability and hazards to the health of human. In this research, the natural sound absorber from cogon grass was investigated. The objective of the research was to evaluate the performance of cogon grass physical characteristics on its acoustical behavior, to evaluate the effect of sodium hydroxide (NaOH) treatment times on physical and acoustical characteristics of cogon grass, to investigate the decay effects after it was left over for twelve months and lastly to compare and verify the acoustical results with theoretical models based on (Delany-Bazley and Miki Model). The measurement of acoustical characteristics which are sound absorption coefficient (SAC) and noise reduction coefficient (NRC) were done by using impedance tube method (ITM). The samples of cogon grass were tested in a way of the untreated and treated with NaOH in varied soaked hours which are one, two, three, four and five hours. Scanning electron microscope (SEM) and density kit were used to investigate physical characteristics. The research confirmed that physical characteristics of tortuosity and airflow resistivity values tend to increase with the increment of treatment times, but the density and porosity tend to decrease. Untreated samples were tested with varied thicknesses of 10, 20, 30, 40 and 50mm. The results show SAC value increases when the thickness of the sample was increased. Treated samples results show the least treated sample (1 hour) reached the maximum SAC value and indicated the highest value of NRC which is 0.50. The results also show a reduction in sound absorption value after the samples were left for twelve months. Verification parts demonstrated that Delany-Bazley and Miki Model can predict approximately pattern compared with ITM results because of the theoretical models are developed by a simple empirical model approach. Overall, cogon grass samples have the good characteristics to be an acoustic material component

    Effectiveness of a Ward level target accountability strategy for hand hygiene

    No full text
    10.1186/s13756-019-0641-0ANTIMICROBIAL RESISTANCE AND INFECTION CONTROL8

    Effect of particle size in the TL response of natural quartz sensitized by high dose of gamma radiation and heat-treatments

    No full text
    This work investigates the effect of particle size in the thermoluminescence (TL) response of a quartz crystal that was initially crushed and classified into ten size fractions between 38 μm and 5 mm. Aliquots of each size fraction were sensitized with a dose of 25 kGy of γ rays and heat-treatments at 400 °C. TL glow curves of sensitized and non-sensitized samples were recorded as a function of different test-doses of γ rays. For the non-sensitized samples, the TL peak near 325 °C increases with the decrease in particle size. In the case of sensitized samples, a strong TL peak near 300 °C increases with the increase in particle size up to mean grain size equal to 304 μm. Above 304 μm, an abrupt reduction in the TL intensity is noticed for the sensitized peak. These effects are discussed in relation to the specific surface area of quartz particles and the intensity of the electron paramagnetic resonance signal of the E'1 center induced by the sensitization process
    corecore