245 research outputs found

    INSTITUTIONAL CHANGE IN INDIAN AGRICULTURE

    Get PDF
    Globalization, privatization and scientific advancements pose new challenges and opportunities for the development of Indian agriculture. The emerging paradigm shifts focus to creation and application of new knowledge for agricultural development and global competitiveness. To facilitate this shift and realize greater economic efficiency, a new set of responsive institutions should emerge. This volume discusses the direction of institutional change in Indian agriculture. The roles of the state, markets and collective actions are examined for evolving the knowledge-intensive agriculture. The contributed papers from a number of leading researchers cover the institutions for R&D, land and water resources, credit, marketing, trade and agro-processing.Industrial Organization, International Development,

    Domestic fish marketing in India - changing structure, conduct, performance and policies

    Get PDF
    This study has been conducted in all the major coastal states and some selected inland states to understand the domestic marketing of fish in India. The total marketing costs of auctioneer, wholesaler, retailer, vendor, marine fishermen cooperative society and contractor/freshwater fishermen cooperative society have been found to be Re 0.98, Rs 8.89, Rs 6.61, Rs 4.50, Rs 6.00 and Rs 3.51, respectively. The marketing efficiencies for Indian major carps (IMC), sardine and seer fish have been found to vary from 34 per cent to 74 per cent, depending on the length of market channel. The marketing efficiency has been found more in the case of marine species than freshwater species, since the latter travel longer distances from the point of production to consumption centre, passing many intermediaries as compared to the former. The fisherman’s share in consumer’s rupee has shown variations across species, marketing channels and markets. The infrastructure facilities at most of the surveyed landing centres, fishing harbours and wholesale and retail markets have been found grossly inadequate and poorly maintained. The study has highlighted the need for formulating a uniform market policy for fishes for easy operation and regulation so that the country’s fish production is efficiently managed and delivered to the consuming population, ensuring at the same time remunerative prices to the fishers.Marketing,

    Antimicrobial activity of Aegle marmelos against clinical pathogens

    Get PDF
    Aegle marmelos is a medicinal herb belongs to the family Rutaceae. The different parts of plants like leaves and flowers are extracted by using the solvent methanol. The methanol extracts were screened for the antimicrobial activity. They showed greater inhibitory effect against both gram positive and gram negative organisms. The organisms used were such as Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Salmonella typhi, Staphylococcus aureus. Based on the present investigation results it is concluded that the methanolic extracts of Aegle marmelos has great potential as antimicrobial agent against different microorganisms and they can be used in the treatment of infections diseases caused by the resistant microorganisms

    On The Stability of Non-Supersymmetric Attractors in String Theory

    Get PDF
    We study non-supersymmetric attractors obtained in Type IIA compactifications on Calabi Yau manifolds. Determining if an attractor is stable or unstable requires an algebraically complicated analysis in general. We show using group theoretic techniques that this analysis can be considerably simplified and can be reduced to solving a simple example like the STU model. For attractors with D0-D4 brane charges, determining stability requires expanding the effective potential to quartic order in the massless fields. We obtain the full set of these terms. For attractors with D0-D6 brane charges, we find that there is a moduli space of solutions and the resulting attractors are stable. Our analysis is restricted to the two derivative action.Comment: 20 pages, Late

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object

    Get PDF
    We report the observation of a compact binary coalescence involving a 22.2–24.3 Me black hole and a compact object with a mass of 2.50–2.67 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of - + 241 45 41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, - + 0.112 0.009 0.008, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to ïżœ0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∌100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−ÂČÂł Hz at 100 Hz for the short-duration search and 1.1 ×10−ÂČÂČ Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−ÂČÂČ Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst ïŹ‚uences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available ïŹ‚uence information. The lowest of these ratios is 4.5 × 103

    A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers
    • 

    corecore