5 research outputs found

    Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents β cell failure in rodent models of type 2 diabetes

    No full text
    The failure of pancreatic β cells to adapt to an increasing demand for insulin is the major mechanism by which patients progress from insulin resistance to type 2 diabetes (T2D) and is thought to be related to dysfunctional lipid homeostasis within those cells. In multiple animal models of diabetes, females demonstrate relative protection from β cell failure. We previously found that the hormone 17β-estradiol (E2) in part mediates this benefit. Here, we show that treating male Zucker diabetic fatty (ZDF) rats with E2 suppressed synthesis and accumulation of fatty acids and glycerolipids in islets and protected against β cell failure. The antilipogenic actions of E2 were recapitulated by pharmacological activation of estrogen receptor α (ERα) or ERβ in a rat β cell line and in cultured ZDF rat, mouse, and human islets. Pancreas-specific null deletion of ERα in mice (PERα–/–) prevented reduction of lipid synthesis by E2 via a direct action in islets, and PERα–/– mice were predisposed to islet lipid accumulation and β cell dysfunction in response to feeding with a high-fat diet. ER activation inhibited β cell lipid synthesis by suppressing the expression (and activity) of fatty acid synthase via a nonclassical pathway dependent on activated Stat3. Accordingly, pancreas-specific deletion of Stat3 in mice curtailed ER-mediated suppression of lipid synthesis. These data suggest that extranuclear ERs may be promising therapeutic targets to prevent β cell failure in T2D

    Systemic Sclerosis Associated Interstitial Lung Disease: A Conceptual Framework for Subclinical, Clinical, and Progressive Disease

    No full text
    OBJECTIVES: Establish a framework by which experts define disease subsets in systemic sclerosis associated interstitial lung disease (SSc-ILD). METHODS: A conceptual framework for subclinical, clinical, and progressive ILD was provided to eighty-three experts, asking them to use the framework and classify actual SSc-ILD patients. Each patient profile was designed to be classified by at least 4 experts in terms of severity and risk of progression at baseline; progression was based on 1-year follow-up data. A consensus was reached if ≥ 75% of experts agreed. Experts provided information on which items were important in determining classification. RESULTS: Forty-four experts (53%) completed the survey. Consensus was achieved on the dimensions of severity (75%, 60 of 80 profiles), risk of progression (71%, 57 of 80 profiles) and progressive ILD (60%, 24 of 40 profiles). For profiles achieving consensus, most were classified as clinical ILD (92%), low risk (54%), and stable (71%). Severity and disease progression overlapped in terms of framework items that were most influential in classifying patients (forced vital capacity, extent of lung involvement on high resolution chest CT (HRCT)); risk of progression was influenced primarily by disease duration. CONCLUSIONS: Using our proposed conceptual framework, international experts were able to achieve a consensus on classifying SSc-ILD patients along the dimensions of disease severity, risk of progression, and progression over time. Experts rely on similar items when classifying disease severity and progression: a combination of spirometry and gas exchange and quantitative HRCT
    corecore