8 research outputs found
Statistical analysis of large simulated yield datasets for studying climate effects.
Many simulation studies have been carried out to predict the effect of climate change on crop yield. Typically, in such study, one or several crop models are used to simulate series of crop yield values for different climate scenarios corresponding to different hypotheses of temperature, CO2 concentration, and rainfall changes. These studies usually generate large datasets including thousands of simulated yield data. The structure of these datasets is complex because they include series of yield values obtained with different mechanistic crop models for different climate scenarios defined from several climatic variables (temperature, CO2 etc.). Statistical methods can play a big part for analyzing large simulated crop yield datasets, especially when yields are simulated using an ensemble of crop models. A formal statistical analysis is then needed in order to estimate the effects of different climatic variables on yield, and to describe the variability of these effects across crop models. Statistical methods are also useful to develop meta-models i.e., statistical models summarizing complex mechanistic models. The objective of this paper is to present a random-coefficient statistical model (mixed-effects model) for analyzing large simulated crop yield datasets produced by the international project AgMip for several major crops. The proposed statistical model shows several interesting features; i) it can be used to estimate the effects of several climate variables on yield using crop model simulations, ii) it quantities the variability of the estimated climate change effects across crop models, ii) it quantifies the between-year yield variability, iv) it can be used as a meta-model in order to estimate effects of new climate change scenarios without running again the mechanistic crop models. The statistical model is first presented in details, and its value is then illustrated in a case study where the effects of climate change scenarios on different crops are compared. See more from this Division: Special Sessions See more from this Session: Symposium--Perspectives on Climate Effects on Agriculture: The International Efforts of AgMI
The Hot Serial Cereal Experiment for modeling wheat response to temperature: Field experiments and AgMIP-Wheat multi-model simulations.
The data set reported here includes the part of a Hot Serial Cereal Experiment (HSC) experiment recently used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat models and quantify their response to temperature. The HSC experiment was conducted in an open-field in a semiarid environment in the southwest USA. The data reported herewith include one hard red spring wheat cultivar (Yecora Rojo) sown approximately every six weeks from December to August for a two-year period for a total of 11 planting dates out of the 15 of the entire HSC experiment. The treatments were chosen to avoid any effect of frost on grain yields. On late fall, winter and early spring plantings temperature free-air controlled enhancement (T-FACE) apparatus utilizing infrared heaters with supplemental irrigation were used to increase air temperature by 1.3°C/2.7°C (day/night) with conditions equivalent to raising air temperature at constant relative humidity (i.e. as expected with global warming) during the whole crop growth cycle. Experimental data include local daily weather data, soil characteristics and initial conditions, detailed crop measurements taken at three growth stages during the growth cycle, and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models
Reducing uncertainty in prediction of wheat performance under climate change
Projections of climate change impacts on crop performances are inherently uncertain. However, multimodel uncertainty analysis of crop responses is rare because systematic and objective comparisons among process-based crop simulation models are difficult. Here we report on the Agricultural Model Intercomparison and Improvement Project ensemble of 30 wheat models tested using both crop and climate observed data in diverse environments, including infra-red heating field experiments, for their accuracy in simulating multiple crop growth, N economy and yield variables. The relative error averaged over models in reproducing observations was 24-38% for the different end-of-season variables. Clusters of wheat models organized by their correlations with temperature, precipitation, and solar radiation revealed common characteristics of climatic responses; however, models are rarely in the same cluster when comparing across sites. We also found that the amount of information used for calibration has only a minor effect on model ensemble climatic responses, but can be large for any single model. When simulating impacts assuming a mid-century A2 emissions scenario for climate projections from 16 downscaled general circulation models and 26 wheat models, a greater proportion of the uncertainty in climate change impact projections was due to variations among wheat models rather than to variations among climate models. Uncertainties in simulated impacts increased with atmospheric [CO2] and associated warming. Extrapolating the model ensemble temperature response (at current atmospheric [CO2]) indicated that warming is already reducing yields at a majority of wheat-growing locations. Finally, only a very weak relationship was found between the models’ sensitivities to interannual temperature variability and their response to long-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs. In conclusion, uncertainties in prediction of climate change impacts on crop performance can be reduced by improving temperature and CO2 relationships in models and are better quantified through use of impact ensembles
Soil nitrogen mineralisation simulated by crop models across different environments and the consequences for model improvment
Soil nitrogen mineralisation simulated by crop models across different environments and the consequences for model improvment. iCROPM2016 International Crop Modelling Symposiu
AgMIP Wheat Pilot Data 4 release
This dataset contains the underlaying data for the study:
Benchmark data set for wheat growth models: field experiments and AgMIP multi-model simulations. Open Data Journal for Agricultural Research : ODjAR
The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario