1,912 research outputs found

    Quantum Evolution of Inhomogeneities in Curved Space

    Get PDF
    We obtain the renormalized equations of motion for matter and semi-classical gravity in an inhomogeneous space-time. We use the functional Schrodinger picture and a simple Gaussian approximation to analyze the time evolution of the λϕ4\lambda\phi^4 model, and we establish the renormalizability of this non-perturbative approximation. We also show that the energy-momentum tensor in this approximation is finite once we consider the usual mass and coupling constant renormalizations, without the need of further geometrical counter-terms.Comment: 22 page

    Calculating the 3D magnetic field of ITER for European TBM studies

    Full text link
    The magnetic perturbation due to the ferromagnetic test blanket modules (TBMs) may deteriorate fast ion confinement in ITER. This effect must be quantified by numerical studies in 3D. We have implemented a combined finite element method (FEM) -- Biot-Savart law integrator method (BSLIM) to calculate the ITER 3D magnetic field and vector potential in detail. Unavoidable geometry simplifications changed the mass of the TBMs and ferritic inserts (FIs) up to 26%. This has been compensated for by modifying the nonlinear ferromagnetic material properties accordingly. Despite the simplifications, the computation geometry and the calculated fields are highly detailed. The combination of careful FEM mesh design and using BSLIM enables the use of the fields unsmoothed for particle orbit-following simulations. The magnetic field was found to agree with earlier calculations and revealed finer details. The vector potential is intended to serve as input for plasma shielding calculations.Comment: In proceedings of the 28th Symposium on Fusion Technolog

    Euclid : Forecast constraints on consistency tests of the Lambda CDM model

    Get PDF
    Context. The standard cosmological model is based on the fundamental assumptions of a spatially homogeneous and isotropic universe on large scales. An observational detection of a violation of these assumptions at any redshift would immediately indicate the presence of new physics. Aims. We quantify the ability of the Euclid mission, together with contemporary surveys, to improve the current sensitivity of null tests of the canonical cosmological constant Lambda and the cold dark matter (Lambda CDM) model in the redshift range 0 < z < 1.8. Methods. We considered both currently available data and simulated Euclid and external data products based on a Lambda CDM fiducial model, an evolving dark energy model assuming the Chevallier-Polarski-Linder parameterization or an inhomogeneous Lemaitre-Tolman-Bondi model with a cosmological constant Lambda, and carried out two separate but complementary analyses: a machine learning reconstruction of the null tests based on genetic algorithms, and a theory-agnostic parametric approach based on Taylor expansion and binning of the data, in order to avoid assumptions about any particular model. Results. We find that in combination with external probes, Euclid can improve current constraints on null tests of the Lambda CDM by approximately a factor of three when using the machine learning approach and by a further factor of two in the case of the parametric approach. However, we also find that in certain cases, the parametric approach may be biased against or missing some features of models far from Lambda CDM Conclusions. Our analysis highlights the importance of synergies between Euclid and other surveys. These synergies are crucial for providing tighter constraints over an extended redshift range for a plethora of different consistency tests of some of the main assumptions of the current cosmological paradigm.Peer reviewe

    Euclid : Constraining ensemble photometric redshift distributions with stacked spectroscopy

    Get PDF
    Context. The ESA Euclid mission will produce photometric galaxy samples over 15 000 square degrees of the sky that will be rich for clustering and weak lensing statistics. The accuracy of the cosmological constraints derived from these measurements will depend on the knowledge of the underlying redshift distributions based on photometric redshift calibrations. Aims. A new approach is proposed to use the stacked spectra from Euclid slitless spectroscopy to augment broad-band photometric information to constrain the redshift distribution with spectral energy distribution fitting. The high spectral resolution available in the stacked spectra complements the photometry and helps to break the colour-redshift degeneracy and constrain the redshift distribution of galaxy samples. Methods. We modelled the stacked spectra as a linear mixture of spectral templates. The mixture may be inverted to infer the underlying redshift distribution using constrained regression algorithms. We demonstrate the method on simulated Vera C. Rubin Observatory and Euclid mock survey data sets based on the Euclid Flagship mock galaxy catalogue. We assess the accuracy of the reconstruction by considering the inference of the baryon acoustic scale from angular two-point correlation function measurements. Results. We selected mock photometric galaxy samples at redshift z>1 using the self-organising map algorithm. Considering the idealised case without dust attenuation, we find that the redshift distributions of these samples can be recovered with 0.5% accuracy on the baryon acoustic scale. The estimates are not significantly degraded by the spectroscopic measurement noise due to the large sample size. However, the error degrades to 2% when the dust attenuation model is left free. We find that the colour degeneracies introduced by attenuation limit the accuracy considering the wavelength coverage of Euclid near-infrared spectroscopy.Peer reviewe

    Inhomogeneous scalar field solutions and inflation

    Get PDF
    We present new exact cosmological inhomogeneous solutions for gravity coupled to a scalar field in a general framework specified by the parameter λ\lambda. The equations of motion (and consequently the solutions) in this framework correspond either to low-energy string theory or Weyl integrable spacetime according to the sign of λ\lambda. We show that different inflationary behaviours are possible, as suggested by the study of the violation of the strong energy condition. Finally, by the analysis of certain curvature scalars we found that some of the solutions may be nonsingular.Comment: LaTex file, 14 page

    On Bubble Growth and Droplet Decay in Cosmological Phase Transitions

    Get PDF
    We study spherically symmetric bubble growth and droplet decay in first order cosmological phase transitions, using a numerical code including both the complete hydrodynamics of the problem and a phenomenological model for the microscopic entropy producing mechanism at the phase transition surface. The small-scale effects of finite wall width and surface tension are thus consistently incorporated. We verify the existence of the different hydrodynamical growth modes proposed recently and investigate the problem of a decaying quark droplet in the QCD phase transition. We find that the decaying droplet leaves behind no rarefaction wave, so that any baryon number inhomogeneity generated previously should survive the decay.Comment: 10 pages (revtex), 10 figures as uuencoded postscrip
    • …
    corecore