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ABSTRACT

Context. The standard cosmological model is based on the fundamental assumptions of a spatially homogeneous and isotropic universe on large
scales. An observational detection of a violation of these assumptions at any redshift would immediately indicate the presence of new physics.
Aims. We quantify the ability of the Euclid mission, together with contemporary surveys, to improve the current sensitivity of null tests of the
canonical cosmological constant Λ and the cold dark matter (ΛCDM) model in the redshift range 0 < z < 1.8.
Methods. We considered both currently available data and simulated Euclid and external data products based on a ΛCDM fiducial model, an
evolving dark energy model assuming the Chevallier-Polarski-Linder parameterization or an inhomogeneous Lemaître-Tolman-Bondi model with
a cosmological constant Λ, and carried out two separate but complementary analyses: a machine learning reconstruction of the null tests based on
genetic algorithms, and a theory-agnostic parametric approach based on Taylor expansion and binning of the data, in order to avoid assumptions
about any particular model.
Results. We find that in combination with external probes, Euclid can improve current constraints on null tests of the ΛCDM by approximately a
factor of three when using the machine learning approach and by a further factor of two in the case of the parametric approach. However, we also
find that in certain cases, the parametric approach may be biased against or missing some features of models far from ΛCDM.
Conclusions. Our analysis highlights the importance of synergies between Euclid and other surveys. These synergies are crucial for providing
tighter constraints over an extended redshift range for a plethora of different consistency tests of some of the main assumptions of the current
cosmological paradigm.

Key words. dark energy – large-scale structure of Universe – cosmology: observations

1. Introduction

Modern cosmology has been built on a combination of the-
oretical considerations, observations, and simulations (Peebles
2020). Illustrative of the last two is the cosmological princi-
ple, which combines the observation that there seems to be no
preferred direction in the sky (local isotropy), with the nonem-
pirical assessment that we do not occupy a special place in
the cosmos (Copernican principle). Together, they imply that

? This paper is published on behalf of the Euclid Consortium.

the Universe on the largest scales must be spatially homoge-
neous (no special place) and isotropic (no special direction),
thereby motivating its description by the Friedmann-Lemaître-
Robertson-Walker (FLRW) geometry.

In addition to symmetries, dynamical prescriptions must be
specified in order to model the history of cosmic expansion
within the FLRW model. This aspect has mostly come from the-
oretical physics and observation. In standard lore, the coupling
of matter and space-time geometry is described by the hitherto
unchallenged theory of general relativity. At late times, which is
the focus of the present article, the energy budget of the Universe
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is largely dominated by pressureless matter. The recent accelera-
tion of cosmic expansion is attributed to Einstein’s cosmological
constant Λ, which may also be interpreted as a negative-pressure
fluid with an equation of state w = p/ρ = −1; and the curvature
of homogeneity hypersurfaces vanishes.

The set of all these features is collectively referred to as
the standard cosmological model, or ΛCDM. The ΛCDM also
includes initial conditions set by the inflationary paradigm.
To date, the ΛCDM is practically compatible with all cos-
mological observations (Planck Collaboration VI 2020), and
hence so are its underlying assumptions. Although it is
intensely discussed in the community, the so-called H0 ten-
sion (Di Valentino et al. 2021), the σ8 tension (Sakr et al. 2018),
and others (Perivolaropoulos & Skara 2021) have not yet proved
convincing enough to claim the discovery of new physics.

Next-generation surveys, such as the Euclid mission, will
represent a leap forward in testing the ΛCDM and its assump-
tions, for the amount and quality of their data will be unprece-
dented. The goal of this article is to assess the performance of a
number of null tests for ΛCDM in the context of Euclid. These
tests are designed to detect any deviation from the history of
cosmic expansion as predicted by the concordance model. They
are agnostic in the sense that they do not require any specific
alternative to be tested against the ΛCDM; they merely address
the question whether Euclid has detected new physics. Never-
theless, if one or several of the tests reviewed here were to reject
the ΛCDM, their variety would help identify which underlying
assumption of the ΛCDM would be violated: Is the Universe
inhomogeneous or anisotropic on large scales? Is dark energy
different from Λ? Do dark matter and dark energy interact? Is
the Universe spatially curved? And so on.

Deviations from spatial homogeneity have previously been
constrained with a plethora of different probes; see Clarkson
(2012) for a review. Examples of probes are standard candles
(Chiang et al. 2019), the fossil record of galaxies (Heavens et al.
2011), the BOSS DR12 quasar sample (Laurent et al. 2016),
both spectroscopic (Scrimgeour 2012) and photometric redshift
surveys (Alonso et al. 2015), the kinetic Sunyaev-Zeldovich
(kSZ) effect on the cosmic microwave background (CMB;
Reichardt et al. 2021), and measurements of our peculiar
velocity (Nadolny et al. 2021). On the theory side, several
tests have been proposed, for example, by considering the
propagation of light rays in an inhomogeneous universe
using numerical relativity (Giblin et al. 2016), using distances
to directly constrain the spatial curvature of the Universe
(Clarkson et al. 2008; Clarkson 2012; Valkenburg et al. 2014),
and using inhomogeneous Lemaître-Tolman-Bondi (LTB) mod-
els (García-Bellido & Haugboelle 2008a; February et al. 2010;
Redlich et al. 2014; Valkenburg et al. 2014; Camarena et al.
2021), and consistency tests have been conducted based on
dynamical probes such as growth rate data (Nesseris & Sapone
2015; Nesseris et al. 2015) and through a linear model formal-
ism (Marra & Sapone 2018).

Future surveys are mainly expected to provide stringent con-
straints on null tests of ΛCDM via very accurate and precise
distance measurements of baryon acoustic oscillations (BAO),
type Ia supernovae (SNe), and lensing shear correlations. In this
work we explicitly focus on Euclid, which is an M-class space
mission of the European Space Agency (ESA) scheduled for
launch in 2022 (Racca 2016). The near-infrared spectrophoto-
metric instrument (Costille et al. 2018) and the visible imager
(Cropper et al. 2018) are carried on board the spacecraft. These
instruments will jointly perform a spectroscopic and a photo-
metric galaxy survey over 15 000 deg2 of sky, aiming to map the

geometry of the Universe and measure the growth of structures
up to z ∼ 2 (Laureijs et al. 2011).

The main cosmological probes of Euclid will be galaxy clus-
tering from the spectroscopic survey, and galaxy clustering and
weak lensing from the photometric survey. Spectroscopic galaxy
surveys offer much higher radial precision, but for fewer objects,
while photometric surveys target a larger number of galaxies,
but the redshift uncertainties are also larger. In particular, given
its high spectroscopic accuracy, Euclid will have very precise
galaxy clustering constraints that also include the radial (i.e.,
along the line of sight) dimension. We here create mock BAO
data using Euclid spectroscopic survey specifications following
the Fisher matrix approach as in Blanchard et al. (2020, hereafter
EC20).

We also highlight some of the synergies between Euclid
and other large-scale structure surveys, namely that of the Dark
Energy Spectroscopic Instrument (DESI; DESI Collaboration
2016) and the Legacy Survey of Space and Time (LSST)
survey, performed at the Vera C. Rubin Observatory
(LSST Science Collaboration 2009). Both will probe the
expansion history of the Universe and its large-scale structure
(LSS) while being complementary to Euclid redshift ranges,
thus greatly extending the redshift range of our constraints.

Amendola et al. (2018) presented forecast constraints on
deviations from spatial homogeneity and the Copernican prin-
ciple by performing a joint analysis of the Euclid galaxy sur-
vey (Laureijs et al. 2011) and a stage IV supernova mission
(Albrecht et al. 2006, assuming SNAP as a concrete example).
In this work we update these results by relying on more recent
Euclid specifications (see EC20), we explore synergies with
other surveys, and we extend the variety of tests. Moreover, we
also implement machine learning and other model-independent
approaches to reconstruct these tests to avoid theoretical biases.

The outline of our paper is as follows: in Sect. 2 we review
the theoretical background of the fundamental assumptions of
the standard cosmological model and various ways in which
they can be broken. In Sect. 3 we summarize the null tests
we used in our analysis. In Sect. 4 we describe the analysis
methods we followed to test the fundamental assumptions of
the standard cosmological model, using the currently available
data and a machine learning approach. In Sect. 5 we describe
how we produced mock data based on three different cosmolo-
gies: the vanilla ΛCDM model, which we used as our null
hypothesis; an evolving dark energy equation of state w(a)
based on the Chevallier-Polarski-Linder (CPL) parameterization
(Chevallier & Polarski 2001; Linder 2003), in order to examine
the response of our null tests to different expansion histories; and
a fiducial cosmology based on the LTB metric. The results of our
analysis are then discussed in Sect. 6 for the currently available
data and in Sect. 7 for the mock data. We finally draw our con-
clusions in Sect. 8.

2. Theoretical background

The consistency tests to be considered in this work are motivated
by various alternatives to the ΛCDM model that have been pro-
posed in the literature. We consider deviations from this baseline
model that range from simple modifications of the expansion his-
tory to models whose common feature is the relaxation of either
the assumption of isotropy or that of spatial homogeneity of the
Universe, or both.

CPL. As an example of the first category concerning mod-
ifications of the expansion history, we focus on the CPL
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parameterization of dark energy (DE), where the equation-of-
state parameter w for this component deviates from the constant
w = −1 value that it takes in ΛCDM and is allowed to vary
with redshift. In this parameterization, the DE equation-of-state
parameter is given by (Chevallier & Polarski 2001; Linder 2003)

w(z) = w0 + wa
z

1 + z
, (1)

where w0 and wa are free parameters.
In the second category, which contains models that relax

the assumption of isotropy or spatial homogeneity of the Uni-
verse, possible alternatives for our purposes may be grouped
into five phenomenological approaches to modify the hypotheses
described above.

Dipole. The first phenomenological approach is a simple
deviation from the Copernican principle, whose effect is non-
perturbative. Its origin might be the presence of a strong attractor
affecting the observer’s position. A typical observer will measure
a high dipole or other multipoles in the cosmic microwave back-
ground (CMB) spectrum due to the change in its peculiar veloc-
ity with respect to the CMB frame (see Naselsky et al. 2012), but
also due to changes in the gradients of the expansion rate and the
divergence of the shear constructed from the two now-measured
directional Hubble parameters; see Valkenburg et al. (2014).

LTB. Next we mention the class of LTB models pro-
posed by Célérier (2000), Tomita (2000) and Alnes et al. (2006)
as an alternative to DE (see also Moffat & Tatarski 1995;
Mustapha et al. 1997). This is an inhomogeneous universe
model with spherical symmetry around a point. It therefore
exhibits local isotropy at that point only. The possibility of a
central gigaparsec-scale void could explain SNe observations
without requiring either an exotic type of repulsive content or
any modification of gravity; see García-Bellido & Haugboelle
(2008a). The LTB metric is given by

ds2 = −c2dt2 +
[R′(t, r)]2

1 − K(r)
dr2 + R2(t, r)dΩ2, (2)

where K(r) is an arbitrary function; a prime denotes a partial spa-
tial derivative with respect to the radial dimension r. If R = a(t) r
and K(r) = k0r2, we recover the familiar FLRW metric. For a
review of these models, see Marra & Notari (2011) and refer-
ences therein. It is worth stressing that void models as alterna-
tives to dark energy have been ruled out. The kinetic Sunyaev-
Zeldovich (kSZ) signal in models without decaying modes is too
strong (García-Bellido & Haugboelle 2008b; Zhang & Stebbins
2011; Zibin & Moss 2011; Bull et al. 2012). On the other hand,
models with sizeable decaying modes (which might have a weak
kSZ signal) are ruled out because of y-distortions (Zibin 2011).
The only possibility of saving these void models would be
choosing specific (fine-tuned) initial conditions, which would
be contrived, or inhomogeneous radiation and baryon frac-
tion (Clarkson & Regis 2011). Consequently, in the following,
we consider the so-called ΛLTB model, that is, the LTB model
with a cosmological constant. This constant provides all or most
of the dark energy, while we can phenomenologically constrain
a small void contribution.

Bianchi models. A third class of models that instead
abandons the isotropy hypothesis is the Bianchi models (see
Ellis & MacCallum 1969; Ellis & van Elst 1999). These are spa-
tially homogeneous models that are endowed with a group of
isometries that transitively act on the spatial hypersurfaces. One

slight modification is obtained in the type-I Bianchi models,
which are characterized by a vanishing spatial curvature, and
contain as a particular case the flat FLRW models. Their line
element can be written as

ds2 = −c2dt2 + a2
x(t)dx2 + a2

y(t)dy2 + a2
z (t)dz2, (3)

where at a given time t, the metric is spatially homogeneous (i.e.,
it does not depend on the spatial coordinates). In this metric, a
sphere of comoving test particles experiences a change in vol-
ume with time, and unlike the FLRW case, is distorted into an
ellipsoid. The sphere is characterized by the average expansion

3H = Hx + Hy + Hz , (4)

where Hx, Hy, and Hz is the Hubble expansion rate along the x,
y, and z dimensions, respectively, while the rate of shape defor-
mation is described by the shear σ(i, j), which is constructed
from the differences between the expansion rates Hi − H j, with
(i, j = 1, 2, 3). This can be completed by specifying the com-
ponents of the spatial metric hµν at a single point and a unit
time-like normal vector to the hypersurface nµ such that the four-
metric is specified by gµν = hµν − nµ nν. Projecting the equations
onto the nµ direction then gives a generalized Friedmann equa-
tion,

3H2 = 8πGρ + σ2 − (3)R/2 + Λ c2, (5)

where G is the gravitational constant, ρ is the energy density of
the matter content, σ2 ≡ σµνσ

µν/2 is the shear scalar, σµν =

θµν − (θ/3) hµν is the shear tensor and θµν = hαµ hβν nαβ is the
expansion tensor, θ is its trace, and hµν = gµν + nµ nν for a time-
like unit vector nµ. Finally, (3)R is the Ricci scalar of the three-
curvature of the spatial hypersurfaces, and Λ is the cosmological
constant.

Backreaction. Another phenomenological approach stems
from the idea that inhomogeneities in our Universe back-react
and affect the average dynamics within our causal horizon such
that the observed acceleration might be attributed to their influ-
ence. This means that if we would like to compute the impact
of the inhomogeneities directly, without requiring a highly sym-
metric solution of Einstein’s equations, one ansatz used in back-
reaction theory is to construct average quantities that follow
equations similar to those of the traditional FLRW model. The
averaged scale factor aD, with additional contributions, can then
be written

3
ȧ2
D

a2
D

− 8πG〈%〉 − Λc2 = −
〈RD〉 + QD

2
, (6)

3
äD
aD

+ 4πG〈%〉 − Λc2 = QD, (7)

˙〈%〉D + 3
ȧD
aD
〈%D〉 = 0, (8)

where the scale factor has been replaced by an average factor.
The new kinematic back-reaction source term

QD =
2
3

〈(
θ − 〈θ〉

)2
〉
− 2

〈
σ2

〉
(9)

arises as a result of the expansion rate θ and shear σ fluctua-
tions. For reviews of the underlying mathematical formalism,
see Buchert (2008), Kolb et al. (2010) and Andersson & Coley
(2011) and references therein. There is a lack of consen-
sus about whether back-reaction is a correct framework, how-
ever, and whether inhomogeneities can generate acceleration;
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see Clarkson et al. (2011), Green & Wald (2014), Buchert et al.
(2015) and Kaiser (2017).

Swiss-cheese models. Finally, we briefly mention
the Swiss-cheese model universe (Einstein & Straus 1945;
Marra et al. 2007), where inhomogeneous LTB patches (the
holes) are embedded in a flat FLRW background (the cheese)
in a way that the dynamics of the holes is scale independent. In
other words, small holes will evolve in the same way as large
holes, and isotropy is therefore preserved (Marra et al. 2007;
Biswas & Notari 2008). One simple approach is to assume
no shell crossing and to define the initial conditions for each
shell at the same time, and the FLRW density is matched at the
boundary of a hole.

We describe below the phenomenological formulations that
serve as null tests to detect deviations from the hypothesis of the
homogeneity and isotropy of the Universe. To do this, we have to
assume a fiducial cosmology for a comparison. Even if this were
enough for our trigger tests to suggest that some of the assump-
tions above need to be revised, we decided to also add a more
subtle treatment in which the fiducial and null tests are consid-
ered in the framework of some of the above models. Therefore,
we considered two well-studied and widely used models that
were proposed as extensions and alternatives to ΛCDM: the CPL
model described above, and the ΛLTB model we detail below,
which has recently been shown to remain a viable alternative to
ΛCDM (Camarena et al. 2021).

3. Consistency tests

We now present the set of consistency tests of the ΛCDM model
that we reconstruct below, using mock data from Euclid and
other contemporary surveys. We explicitly use a variety of null
tests of the ΛCDM model and of the FLRW metric itself, as
each one is sensitive to different probes in the redshift range
covered by Euclid. For example, while the Om statistic directly
probes the Hubble expansion, the global shear test probes the
spatial homogeneity of the Universe, and so on. It is necessary
to focus on specific tests because to probe the assumptions of
isotropy and homogeneity, we need to assume the FRLW metric,
along with a model for interpreting the observations. One way to
do this is by forecasting constraints on consistency tests of the
ΛCDM model, which are the tests we propose in this section.

3.1. Om statistic

The Hubble parameter at late times, when we can safely neglect
radiation, is given in a flat ΛCDM universe by

H2(z) = H2
0

[
Ωm,0 (1 + z)3 + 1 −Ωm,0

]
, (10)

where H0 is the Hubble constant, Ωm,0 ≡ ρm/ρc is the fractional
matter density parameter, and ρc is the critical density for which
the Universe is flat. Then, solving for Ωm,0, we can create the
so-called OmH(z) quantity, defined as

OmH(z) ≡
h2(z) − 1

(1 + z)3 − 1
−→ Ωm,0 implies ΛCDM, (11)

which has to be constant and equal to the matter energy density
Ωm,0 only when ΛCDM is the true model describing the evolu-
tion of the Universe and where we have defined the dimension-
less Hubble parameter h(z) ≡ H(z)/H0 (see Sahni et al. 2008;
Zunckel & Clarkson 2008).

In the zero-redshift limit, however, this quantity is ill defined,
which can limit the precision and accuracy of this test. This
might also introduce biases if the numerator and denominator
uncertainties do not behave in the same way. In general, how-
ever, any deviations of Eq. (11) from a constant and its ΛCDM
value given by Eq. (10) imply that ΛCDM does not hold, regard-
less of the Ωm,0 value. Reconstructions of the OmH(z) test with
earlier data were performed in Nesseris & Shafieloo (2010).

3.2. Extensions of the Om statistic with curvature

We also considered the extended OmH(z) statistic by Seikel et al.
(2012) when curvature is present. In this case, we can solve
simultaneously the ΛCDM Friedmann equations for both the
matter and the curvature parameters, and doing so, we find the
two tests

Om(z) ≡ 2
(1 + z) [1 − h2(z)] + z (2 + z) h(z) h′(z)

z2 (1 + z) (3 + z)
, (12)

OK(z) ≡
3 (1 + z)2 [h2(z) − 1] − 2z (3 + 3z + z2) h(z) h′(z)

z2 (1 + z) (3 + z)
, (13)

where a prime is a derivative with respect to the redshift z, and
again we have

Om(z) −→ Ωm,0 implies ΛCDM, (14)
OK(z) −→ Ωk,0 implies ΛCDM, (15)

where both conditions have to hold simultaneously if the curved
ΛCDM model is true.

The main advantage of these null tests compared to the
OmH(z) is that we do not need to make any assumptions on
the spatial curvature of the Universe. Other possibilities that
also include information from the distances were explored in
Yahya et al. (2014).

3.3. r0 test for interactions in the dark sector

Recently, von Marttens et al. (2019b) (see also von Marttens et al.
2021) proposed a null test that is based on the ratio of cold
dark matter (CDM) and DE energy densities, that is, r(z) =
ρCDM(z)/ρDE(z), which for the ΛCDM model is equal to r(z) =
r0 (1 + z)3, with r0 = Ωc,0/ΩDE,0. Then the Friedmann equation
for ΛCDM can be rewritten as

h2(z) = Ωd,0
1 + r0 (1 + z)3

1 + r0
+ Ωb,0(1 + z)3, (16)

where Ωd,0 = Ωc,0 + ΩDE,0 = 1 − Ωb,0. We assume flatness, and
we ignore radiation as we only consider low-redshift data.

Solving Eq. (16) for r0, we can define a null test for models
with interactions in the dark sector as

r0 =
1 −Ωb,0 + Ωb,0(1 + z)3 − h2(z)

h2(z) − (1 + z)3 , (17)

which for ΛCDM has to be constant at all redshifts. This test
is again ill defined at low redshifts, however, and also requires
an external prior on the baryon density Ωb,0. The natural choice
would be to use the value obtained either from CMB data, for
instance, Planck, or from Big Bang nucleosynthesis (BBN), but
the two currently do not agree (Pitrou et al. 2021). We therefore
use the Planck 2018 best-fit value below.
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Moreover, the tests of Eq. (11) and Eq. (17) are only degen-
erate in the case of ΛCDM, where we may show that indeed,

r0(z) =
OmH(z) −Ωb,0

1 − OmH(z)
−→ const., (18)

which implies ΛCDM. Furthermore, if either of Eq. (11) or
Eq. (17) is a constant, then so is the other. However, r0 does
depend on the value of Ωb,0, and in general, the relation
between r0(z) and OmH(z) might be more complicated for non-
ΛCDM models. Furthermore, as discussed in von Marttens et al.
(2019a), a nontrivial r0(z) can be mapped directly into the DM-
DE coupling function.

Overall, the r0(z) test probes for interactions in the dark sec-
tor, which somewhat exceeds just testing for deviations from the
ΛCDM model. We did not consider fiducial cosmologies with
DM-DE interactions here, however.

3.4. Global shear

We can also explore another test of the Copernican principle in
the form of the normalized global shear Σ ≡ (HL − HT )/(HL +
2HT ), where HL and HT are the longitudinal and transverse Hub-
ble rates of the LTB metric (see García-Bellido & Haugboelle
2009) and the term HL + 2HT in the denominator is there in
order to make the test dimensionless. Then, we can rewrite the
normalized global shear using physical quantities such as angu-
lar diameter distances as a function of redshift as

Σ(z) =

√
1 − kr2(z) − h(z)d′(z)

3h(z) H0
c DA(z) + 2

√
1 − kr2(z) − 2h(z)d′(z)

'
1 − h(z)d′(z)

3h(z) H0
c DA(z) + 2 − 2h(z)d′(z)

, (19)

where the primes denote a derivative with respect to the redshift
z, and we have defined the dimensionless comoving distance,

d(z) = (1+ z)
H0

c
DA(z) =

1√
−Ωk,0

sin
[ √
−Ωk,0

∫ z

0

dx
h(x)

]
. (20)

In a homogeneous universe described by the FLRW metric, the
global shear given by Eq. (19) is equal to zero because the two
expansion rates are the same, regardless of the curvature (see
García-Bellido & Haugboelle 2009).

3.5. Distance null tests

Applying the Lagrange inversion theorem to the dimension-
less luminosity and angular diameter distances, dL(z,Ωm,0) ≡
c−1H0 DL(z,Ωm,0) and dA(z,Ωm,0) ≡ c−1H0 DA(z,Ωm,0), respec-
tively, we can solve for Ωm,0 similarly to the OmH(z) test; see
Arjona & Nesseris (2020b). Restricting ourselves to late times,
when DE dominates the other components, we may safely
neglect radiation and neutrinos. Thus, the analytical expression
of the dimensional luminosity distance for the ΛCDM model,
assuming a flat Universe, but neglecting radiation and neutrinos,
is given by

DL(z,Ωm,0) = c(1 + z)
∫ z

0

dx
H(x)

=
c

H0

2(1 + z)√
Ωm,0

×

2F1

(
1
2
,

1
6

;
7
6

;
Ωm,0 − 1

Ωm,0

)
−

2F1

[
1
2 ,

1
6 ; 7

6 ; Ωm,0−1
Ωm,0(1+z)3

]
√

1 + z

 ,
(21)

where 2F1 (a, b; c; x) is a hypergeometric function.
To invert the previous equation, we first performed a series

expansion on Eq. (21) around Ωm,0 = 1 and kept the first 12
terms in order to obtain a reliable unbiased estimation and avoid
theoretical systematic uncertainties by having to truncate the
series expansion. Alternatively, one may directly Taylor expand
the integrand of Eq. (21) and then perform the integration term
by term, so that the two approaches are equivalent.

Finally, we applied the Lagrange inversion theorem to actu-
ally invert the series and to write the matter density Ωm,0 as a
function of the dimensionless luminosity distance dL, that is,
OmdL = OmdL(z, dL). For example, the first two terms of the
expansion are

OmdL(a, dL) = 1 −
7a

(
dL −

2−2
√

a
a

)
6 +
√

a
(
a3 − 7

) + O(d2
L), (22)

where the scale factor a is related to the redshift z as a = 1/(1+z),
and as mentioned, for the actual calculations, we kept the first 12
terms in the expansion. As we show in the plots in later sections,
this series expansion converges nicely in the redshift range of
our data.

This null test has the main advantage that it does not require
taking derivatives of the data as we use the luminosity distance
directly. Similarly, if the distance duality relation (DDR) holds,
as we do in this work, then the angular diameter distance can be
calculated via

DA(z) =
DL(z)

(1 + z)2 , (23)

and assuming the number conservation of photons, we can fol-
low the same approach as for the luminosity distance and find
through the Langrange inversion theorem an expression for the
matter density Ωm,0 as a function of the dimensionless angular
diameter distance dA(z), that is, OmdA = OmdA(z, dA). The first
two terms of the expansion in this case are

OmdA(a, dA) = 1 −
7
[
dA + 2a

(√
a − 1

)]
a
[
6 +
√

a
(
a3 − 7

)] + O(d2
A). (24)

As mentioned earlier, we kept the first 12 terms of the expansion
for the actual calculations in this case as well.

3.6. Curvature test

A direct test of the Copernican principle is the curvature test
of Clarkson et al. (2008), which considers the distance-redshift
relation in an FLRW model of any curvature. Solving Eq. (20)
for the curvature parameter, we find

Ωk(z) =
[h(z)d′(z)]2

− 1
[d(z)]2 −→ const.. (25)

One way to interpret Eq. (25) is that it provides the means for
measuring the current value of the curvature parameter today by
using Hubble rate and distance data. In the context of the FLRW
metric, this parameter is constant regardless of the dark energy
model. Equivalently, we can also write the aforementioned con-
dition as

C(z) = 1 + h2(z)
{
d(z) d′′(z) −

[
d′(z)

]2
}

+ h(z)h′(z)d(z)d′(z) −→ 0. (26)
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ΛCDM DA(Ωm,Ωk,z)
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Fig. 1. Flowchart describing the consistency tests presented in Sect. 3.
The color-coding corresponds to green for the tests that require the Hub-
ble parameter H(z), red for those that require the angular diameter dis-
tance DA(z), yellow = red + green for tests that require both H(z) and
DA(z), and finally, blue for the test that requires the luminosity distance
DL(z). In all cases, we inverted or solved for crucial quantities (a pro-
cess denoted by an arrow) that describe the expansion history of the
Universe based on the ΛCDM model, making assumptions about the
curvature as required in each test (denoted above the arrows). As an
example, we can solve the Hubble parameter H(Ωm,0, z) of ΛCDM for
Ωm,0, and assuming flatness, we can write the matter density parame-
ter in terms of the dimensionless Hubble parameter h(z), see Eq. (11).
Clearly, OmH(z) → Ωm,0 only if ΛCDM is the correct description of
the expansion of the Universe. A similar process is also followed for
the remaining tests, which we can write in terms of the dimensionless
distances dL(z) and dA(z).

In general, for space times other than FLRW metrics (e.g., in
LTB models), we have that C(z) , 0, or Ωk(z) , const.

As was shown in Sapone et al. (2014), however, the cur-
vature test Ωk(z) diverges as ∼1/z2 for low redshifts, hence
we regularize the divergence, and instead consider the quantity
z2Ωk(z) below. This is also similar to the complementary test
of the Copernican principle that also uses the distances and the
Hubble rate, as explored in Arjona & Nesseris (2021).

Finally, in Fig. 1 we show a flowchart that systematically
organizes the different tests we consider. We refer to Clarkson
(2012) for a review.

4. Analysis method of currently available data

4.1. Currently available data

In order to constrain deviations from the ΛCDM model and the
FLRW metric, we now analyze a set of data providing infor-
mation about the Hubble rate H(z), the luminosity DL(z), and
the angular diameter distance DA(z). Below, we describe the
currently available BAO and SNe data and present our analysis
method.

We first considered the BAO data, given via measurements
of the ratio dz, which is defined as

dz ≡
rs(zd)
DV(z)

, (27)

where DV is the spherically averaged distance

DV(z) =

[
(1 + z)2 D2

A(z)
c z

H(z)

]1/3

, (28)

while rs(zd) is the comoving sound horizon at the drag epoch,

rs(zd) =

∫ ∞

zd

cs(z)
H(z)

dz, (29)

cs(z) is the sound speed of the baryon-photon plasma, and zd is
the redshift at the drag epoch; see Eq. (4) of Eisenstein & Hu
(1998) for a fitting function that is accurate to about 2% on
average compared to numerical estimates of rs(zd) obtained
via recombination codes. Anderson et al. (2014) and Aubourg
(2015) obtained similar approximations for the sound horizon
that are accurate to about 0.1%, while Aizpuru et al. (2021) pre-
sented machine learning improved fitting functions, which are
accurate to about 0.018%.

The actual BAO data considered here, described in terms of
dz given by Eq. (27), the Hubble distance DH(z) = c/H(z), and
the comoving angular diameter distance DM(z) = (1 + z) DA(z),
are provided by the 6dF galaxy survey (6dFGS; Beutler et al.
2011), the WiggleZ survey (Blake et al. 2012), the third-year
(Y3) data release of the dark energy survey (DES; Abbott et al.
2022), and the extended baryon oscillation spectroscopic survey
(eBOSS) of the completed Sloan digital sky survey (SDSS-IV;
Alam 2021). We refer to this combination of points as BAO and
refer to Appendix A of Martinelli et al. (2020) and Table 3 of
Alam (2021) for their exact values and their likelihood.

We have considered that a fiducial cosmology is commonly
adopted in order to convert the measured angular scales into dis-
tances for the BAO data; we corrected the BAO results to be
consistent with our models where necessary. However, we did
not model the change in the nonlinear effects that may modify
and damp the position of the BAO. This could introduce sys-
tematic uncertainties of a few percent in the reconstructions (see
Angulo et al. 2008) and may lead to a lesser constraining power
(see, e.g., Anselmi et al. 2018). The reason is that the BAO is
essentially a feature at linear scales and the damping parameter
is marginalized over. Moreover, modeling the nonlinear scales is
nontrivial for theories beyond the ΛCDM model and the FLRW
metric and thus is beyond the scope of this paper. Therefore, we
chose not to correct for these effects and left this for future and
more focused work on the subject.

We also considered the SNe, which can constrain the lumi-
nosity distance DL(z). The key observable is the apparent mag-
nitude m(z)

m(z) = M0 + 5 log10

[
DL(z)
Mpc

]
+ 25, (30)

where M0 is the intrinsic magnitude of the supernova at a
redshift z. Clearly, if no external information is provided, the
Hubble constant H0 is completely degenerate with M0 as the
SNe data alone cannot constrain these two quantities. Here we
considered the updated Pantheon compilation of 1048 points
from Scolnic et al. (2018), while for the likelihood, we used the
expression given in Appendix C of Conley et al. (2011), which is
already marginalized over M0 and H0 and takes the covariances
of the SNe data into account.

4.2. Genetic algorithms

We now describe a machine learning approach, called genetic
algorithms (GA). The GAs are a set of stochastic optimization
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methods that are commonly applied in the context of nonpara-
metric reconstructions of data. They are inspired by the notion of
grammatical evolution, and in particular, the genetic operations of
mutation, that is, a random change in an individual, and crossover,
that is, the combination of different individuals to form offspring.
These operators behave as an environmental pressure, thus emu-
lating the concept of natural selection in biology.

The reproductive success of a member of the population, or
in other words, the probability that it will have offspring, is usu-
ally assumed to be proportional to its fitness, which is a mea-
sure of how accurately every member of the population fits the
data. We quantified the fitness of the individuals via a standard χ2

statistic. Overall, the GA have been used to probe for extensions
of the standard model (Akrami et al. 2010); deviations from
ΛCDM, both at the background and the perturbation level in lin-
ear order (Nesseris & García-Bellido 2012; Arjona & Nesseris
2020a,b); to reconstruct a variety of cosmological data, such
as SNe data (Bogdanos & Nesseris 2009; Arjona 2020); or to
perform reconstructions of null tests, for example, the so-called
Om statistic and the curvature test (Nesseris & Shafieloo 2010;
Nesseris & García-Bellido 2013; Sapone et al. 2014).

We performed a simultaneous fit of the SNe and BAO data
with the GA for the currently available data and for the mocks
presented in later sections, via the following approach. During
the initialization phase, a set of functions was randomly chosen
among an orthogonal basis, in the classical sense of orthogonal
polynomials for the related functions that include polynomials,
exp, log, and other elementary functions, but also the operators
+,−,×,÷, and ∧, where the wedge corresponds to exponentia-
tion, for instance, for two functions f (x) and g(x), that would
be f ∧ g ≡ f g = exp

[
g ∗ log( f )

]
, so that every member cor-

responds to a random guess for the Hubble rate H(z) and the
luminosity distance DL(z). Although we still assumed the valid-
ity of the distance duality relation between the luminosity and
angular diameter distances, DL(z) = (1 + z)2 DA(z), as this case
was tested in Martinelli et al. (2020), we relaxed the assumption
of Eq. (20), however, because if it is valid, then the global shear
test Σ(z) is automatically satisfied regardless of the reconstruc-
tion method (GA, etc). Thus, the GA evolves the three functions
of redshift that correspond to the Hubble rate H(z), the luminos-
ity distance DL(z), and the angular diameter distance, given by
DA(z) = DL(z)/(1 + z)2.

The GA does not a priori impose a prior on the functional
space, and in principle, given a grammar, the output best-fitting
functions are unconstrained in terms of their properties (other
than they should fit the data very well). However, we do need to
assume certain priors in order to ensure that the derived functions
have physical meaning. The way this was done is twofold. First,
we demanded that all functions were smooth, continuous, and
differentiable across the redshift range covered by the data. This
was done automatically in our implementation of the GA code.
Second, we also assumed certain physical priors, for example,
that the luminosity distance at z = 0 was zero, to ensure that the
resulting functions were realistic, but we made no assumption on
a DE model.

After this initial population of function was set up, we then
calculated the fitness of every member via a χ2 statistic, using
the SNe and BAO data and their individual covariances simulta-
neously as input, thus assessing the global fitness of the set of the
three reconstructed functions. Next, using the tournament selec-
tion approach (see Bogdanos & Nesseris 2009 for more details),
a random set of the best-fitting functions in every generation was
chosen, and the crossover and mutation operators were applied
to the selected functions. Finally, we iterated this process thou-

sands of times in order to ensure a good convergence of the algo-
rithm, but we also performed runs with different random seeds,
in order to avoid biasing the results by the choice of a specific
random seed.

The final output of the GA after converged is a set of three
continuous and differentiable functions of redshift for the Hub-
ble parameter H(z), the luminosity distance DL(z), and the angu-
lar diameter distance DA(z). In the case of the currently available
data, we also numerically minimized the χ2 over the combina-
tion rs(zd)h, where rs(zd) is the comoving sound horizon at the
drag epoch and h = H0/(100 km s−1 Mpc−1), in order to avoid
any assumptions about the Hubble constant for the BAO physics
at early times. However, this complication does not exist for
the fiducial BAO data, as they have already been marginalized
over that quantity and the angular diameter distance is directly
available. Moreover, because the BAO data cannot indepen-
dently constrain the combination Ωb,0h2, we assumed the value
Ωb,0h2 = 0.02225 from Planck 2018 (Planck Collaboration VI
2020) where necessary.

The uncertainties of the best-fit Hubble parameter H(z) and
the luminosity distance DL(z) were obtained from the GA via a
path integral approach developed by Nesseris & García-Bellido
(2012, 2013). Specifically, the uncertainties were calculated
by functionally integrating the likelihood, that is, perform-
ing a path integral, over the whole functional space covered
by the GA. This approach has been extensively tested by
Nesseris & García-Bellido (2012) and was found to agree with
error estimates obtained via a bootstrap Monte Carlo method.
We used the publicly available code Genetic Algorithms for
the numerical implementation of the GA1.

4.3. Binning and parameterized approach

We can now describe our parameterized method for the null tests
presented in the previous section to probe for deviations from
ΛCDM and spatial homogeneity. To do this, we followed a two-
pronged approach.

First, we binned the Hubble rate and distance data in bins
with an equal number of points, and then we calculated the var-
ious tests using the expressions in Sect. 3. The first technique to
explore the sensitivity of the tests we present consists of eval-
uating them in redshift bins. Each test is sensitive to a partic-
ular combination of the different observables and parameters,
hence the binning technique had to be performed individually to
take the proper dependence and the covariances into account. To
compute the OmH and r0 tests, we binned the H(z) data at differ-
ent redshifts and propagated their uncertainties to the final tests
by taking the diagonal elements of the covariance matrices of the
data. We verified following the approach of Nesseris & Sapone
(2014) that our choice of the covariance matrices did not affect
the results by more than 1%.

Furthermore, to compute OmdA and OmdL, we binned the
corresponding distances. DA(z) comes directly from the BAO
mocks, whereas for DL(z), we used the distance moduli of SNe
by inverting Eq. (30). For the distance moduli, we further binned
the data in 20 equally spaced redshift bins in order to have
enough points and help compute the derivatives in a wider red-
shift range.

The uncertainties on the final OmdL test were obtained using
a standard error propagation technique. Particular care was taken
for the Σ(z), Ωk(z), Om(z), and OK(z) tests. The global shear test
Σ(z) depends simultaneously on H(z) and DA(z) with its first

1 https://github.com/snesseris/Genetic-Algorithms
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derivative with respect to redshift, D′A(z). The derivative of the
angular diameter distance was obtained numerically considering
two consecutive bins,

D′A(zi) =
DA(zi+1) − DA(zi)

zi+1 − zi
. (31)

The uncertainties on the final test were obtained by constructing
the Jacobian matrix, which takes the derivatives of Σ with respect
to H(z), DA(z), and D′A(z) into account and by then propagating
the matrix with the covariance matrix of the data.

The curvature test Ωk(z) depends on H(z), d(z) = (1 +
z) c−1H0 DA(z), and d′(z), hence we recast the Ωk test as a
function of the angular diameter distance in order to directly
propagate the uncertainties from the data. We also adopted the
numerical derivative for two consecutive bins for d′(z), similar
to Eq. (31), and the final uncertainties were obtained as for the
Σ(z) test.

The Om(z) and OK(z) terms only depend on H(z) and its
first derivative, H′(z). The latter was evaluated numerically in
the same way, and the uncertainties on the final tests were
obtained using the propagation rule for both H(z) and H′(z).
Finally, the number of bins for Σ(z), Ωk(z), Om(z), and OK(z)
is ndata − 1 because the test depends on the first derivatives of the
observables.

Second, for each of the null tests we examined, we fit the
binned data we derived in the previous step with a paramet-
ric form that is inspired by the CPL parameterization for the
dark energy equation of state, shown in Eq. (1), in order to
obtain forecast constraints from Euclid for the deviations from
the expected values and for the redshift trends of these null
tests.

Specifically, each quantity we tested (P) was parameterized
with the functional form

P(z) = P0 + P1
z

1 + z
, (32)

where P0 is its value today and P1 the first derivative, both eval-
uated at a = 1. This simple parameterization, based on a Taylor
expansion, allows us to characterize in a simple and model-
independent fashion how Euclid will be able to carry out the
tests. The only exception to this form is the one chosen for the
test of Eq. (25), for which we multiplied the parameterization
above by a factor z2 in order to ensure that there is no divergence
at the present time.

Using the binned values we obtained in the first step of this
approach as input data, we fit the predictions given by Eq. (32),
sampling the two free parameters through the publicly avail-
able sampler Cobaya (Torrado & Lewis 2021), which exploits
the Metropolis-Hastings algorithm presented in Lewis & Bridle
(2002) and Lewis (2013). In each case, we assumed flat priors
on the two free parameters of the analysis. The results of this
parameterized approach is denoted PA below.

We emphasize that the order of the expansion we used for
the PA is somewhat arbitrary. We chose to truncate the expan-
sion at first order, analogously with the CPL parameterization
for the DE equation of state, but this choice has significant
effects. Our results clearly show (see Sect. 7), the PA at first
order lacks the flexibility to accurately reconstruct several of the
tests considered in this paper, especially when we do not con-
sider the ΛCDM fiducial. The purpose of the PA here there-
fore is to perform a comparison with the GA, which clearly
shows the trade-off between simplicity and accuracy of the
reconstruction.

5. Analysis method for the mock data

5.1. Fiducial cosmologies

In order to forecast the ability of Euclid to improve upon the
sensitivity of the null tests mentioned in Sect. 3, we relied on
mock data based on a priori known fiducial cosmologies, which
we briefly describe. In particular, we used the ΛCDM model, the
CPL model (w0waCDM), and the ΛLTB model to create simu-
lated data sets for the SNe and the BAO measurements based on
the Euclid specifications.

First, for the fiducial cosmologies based on the ΛCDM and
CPL models, we used the values of the parameters shown in
Table 1. Both of these fiducial cosmologies assume no violation
of the spatial homogeneity and isotropy of the FLRW metric,
and the ΛCDM fiducial was also used in EC20. In this case, we
can jointly write the Hubble expansion rate at late times when
we safely neglect radiation and assuming flatness (Ωk,0 = 0) for
the two models as

H2(a)
H2

0

= Ωm,0 a−3 + (1−Ωm,0) exp
[
−3

∫ a

1

1 + w(α)
α

dα
]
, (33)

where the dark energy equation of state for the CPL model fol-
lows Eq. (1), which includes the ΛCDM model for (w0,wa) =
(−1, 0), while the scale factor is a = 1/(1 + z). For the
CPL fiducial, we chose the parameters (w0,wa) = (−0.8,−1)
as an extreme case, which corresponds to the combina-
tion TT, TE, EE+lowE+lensing+SNe+BAO; see Fig. 30 of
Planck Collaboration VI (2020). Furthermore, we also assumed
the values for the SNe absolute magnitude M0, the baryon den-
sity Ωb,0h2, and the Hubble rate today H0 as given in Table 1.

Regarding the ΛLTB mock, considering the LTB metric of
Eq. (2) and using Einstein’s equations, we obtain the modified
Friedmann equation,

H2
⊥(r, t) ≡

[
Ṙ(r, t)
R(r, t)

]2

=
2m(r)
R3(r, t)

+
2r2k(r) M2

R2(r, t)
+

Λ c2

3
, (34)

where the dot is a time derivative, and the radial dependent mat-
ter density

ρm(r, t) =
m′(r)

4πr2R′(r, t)R(r, t)2 , (35)

where M is an arbitrary mass scale, and m(r) is the so-called
Euclidean mass function. We have conveniently recast K(r) ≡
−2r2k(r)M2, where k(r) is the curvature profile of the model2.
In addition to the mass function, m(r), and the curvature profile,
k(r), the LTB solution introduces another free function: the so-
called Big Bang function, tBB(r), which appears as the constant
of integration of Eq. (34), defined via

t − tBB(r) =

∫ R(r,t)

0

dx√
2m(r)x−1 + 2r2k(r)M2 + Λ

3 x2
. (36)

We also assumed the compensated curvature profile,

k(r) = kb + (kc − kb)P3(r/rB), (37)

Pn(x) =

1 − exp
[
− 1

x (1 − x)n
]

0 ≤ x < 1,
0 1 ≤ x,

(38)

2 Here, H⊥ and M have units of Mpc−1, m has units of Mpc, and that
k(r) is dimensionless.

A67, page 8 of 23



S. Nesseris et al.: Euclid: Forecast constraints on consistency tests of the ΛCDM model

Table 1. Parameter values for the fiducial models we used for the mocks.

Model M0 Ωm,0 Ωb,0h2 H0 w0 wa δ0 zB

ΛCDM −19.3 0.32 0.02225 67 −1 0 – –
CPL −19.3 0.32 0.02225 67 −0.8 −1 – –
ΛLTB −19.3 0.32 0.02225 67 −1 0 −0.65 1.5

Notes. The values for the ΛCDM follow the fiducial of EC20; in particular, spatial flatness is assumed. H0 is shown in units of km s−1 Mpc−1.
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Fig. 2. Matter density contrast of the ΛLTB model as a function of red-
shift z for δ0 = −0.65 and zB = 1.5.

where kb and kc are the curvature outside and at the center of
the spherical inhomogeneity, respectively, and rB is the comov-
ing radius of the inhomogeneity. In order to avoid the decay-
ing modes on the matter density field, we set the Big Bang
function to tBB(r) = 0. The absence of decaying modes of the
ΛLTB model ensures the agreement with the standard scenario
of inflation. The remaining arbitrary function, m(r), is effectively
a gauge choice, which we fixed here by m(r) = 4πM2r3/3 (see
Biswas et al. 2010 for more details).

Since we assumed a compensated model, the ΛLTB model
becomes exactly ΛCDM at scales r > rB. It is specified by the
six usual ΛCDM parameters plus the parameters introduced by
the profile k(r), namely kc and rB (from Eq. (34), note that kb ≡

4πΩk,0/3Ωm,0). Following Camarena et al. (2021), we mapped
kc into the central density contrast δ0 ≡ ρm(0, t0)/ρm(rB, t0) − 1
and rB into its corresponding redshift zB. We provide the rele-
vant parameters used for the ΛLTB mocks in Table 1, and in
Fig. 2 we show the matter density contrast, defined as δρm ≡

ρm(r, t0)/ρm(rB, t0) − 1. The values of the parameters δ0 and zB
were chosen for historical reasons. An underdensity of contrast
≈ −0.5 up to a redshift of ≈ 0.7 can indeed fit the luminosity-
distance-redshift relation of the ΛCDM model, explaining away
dark energy (Marra & Notari 2011).

After establishing the three cosmologies that we wished to
examine, we calculated the fiducial background quantities for
the Hubble rate, the luminosity, and angular diameter distances
as a function of redshift z. Finally, using the specifications of
forthcoming surveys as described below, we created our mock
BAO and SNe data.

While high precision is expected from forthcoming surveys
such as Euclid, it is crucial to ensure that they are accurate, and
several efforts have been made to take observational systematic

uncertainties into account that will affect the surveys. For exam-
ple, in Euclid Collaboration (2020), the observational systematic
effects of the Euclid VIS instrument were studied, also taking
the modeling of the point spread function and the charge trans-
fer inefficiency into account. While some of the specifications
for future instruments might still change prior to completion,
here we assumed that by the time the data arrive, the system-
atic effects described above will be well understood. Thus, we
added all the relevant astrophysical systematic effects, such as
the galaxy bias, as described in the following subsections.

Finally, it is worth stressing that the covariance matrices
were computed assuming the fiducial ΛCDM cosmology. This
means that we neglect the error due to the use of a non-ΛCDM
fiducial cosmology. The computation of covariance matrices for
alternative cosmologies is indeed an open issue in the exploita-
tion of next-generation survey data (Harnois-Deraps et al. 2019;
Friedrich et al. 2021).

5.2. SNe surveys

We considered two future SNe surveys, one based on the pro-
posed Euclid DESIRE survey (Laureijs et al. 2011; Astier et al.
2014), and the other based on the specifications of the LSST.
We assumed that the Euclid DESIRE survey will observe 1700
supernovae in the range z ∈ [0.7, 1.6], while the LSST survey
will observe 8800 supernovae in the redshift range z ∈ [0.1, 1.0]
for a total of 10 500 data points.

In both cases we assumed the redshift distributions described
in Astier et al. (2014), and we further assumed that they are
uncorrelated with each other. While the DESIRE survey is not
a guaranteed output of Euclid, we include it here in order to
extend the redshift range of LSST, as this is crucial for the GA
reconstruction at high z. For every SNe event, we assumed an
observational error of the form

σ2
tot,i = δµ2

i + σ2
flux + σ2

scat + σ2
intr, (39)

where the flux, scatter, and intrinsic contributions are the same
for each event: σflux = 0.01, σscat = 0.025, and σintr = 0.12,
respectively (see Astier et al. 2014). We also included an error
on the distance modulus µ = m − M0 that evolves linearly with
the redshift z as

δµ = eM z, (40)

where we assumed that the parameter eM is drawn from a
Gaussian distribution with zero mean and standard deviation
σ(eM) = 0.01 (see Gong et al. 2010; Astier et al. 2014). The dis-
tance modulus error takes the possible redshift evolution of SNe
into account, which has not been accounted for by the distance
estimator; see Astier et al. (2014). We note that eM = 0.01 is
needed to allow for systematic evolution, but it would just add in
quadrature to the effective eM = 0.055 coming from lensing, to
make a single effective eM that is negligibly different from 0.055.

A67, page 9 of 23



A&A 660, A67 (2022)

The uncertainty due to lensing was estimated theoretically
to be σlens = 0.052 z (Marra et al. 2013; Quartin et al. 2014)
and σlens = 0.056 z (Ben-Dayan et al. 2013), and observation-
ally with Supernova Legacy Survey data to be σlens = (0.055 ±
0.04) z (Jonsson et al. 2010) and σlens = (0.054 ± 0.024) z
(Kronborg et al. 2010).

5.3. Large-scale structure surveys

As we are interested in forecasting the sensitivity of the null
tests for ΛCDM with Euclid, we now describe how we simu-
lated BAO data using the Fisher matrix approach. To do this, we
followed the same method as was used in EC20 for the spectro-
scopic survey.

We mainly focus on the spectroscopic Euclid survey because
our goal is to obtain precise measurements of the Hubble param-
eter H(z) and the angular diameter distance DA(z). Overall, the
Euclid survey will be able to probe the galaxy power spectrum
in the redshift range z ∈ [0.9, 1.8] where, as mentioned in EC20,
the main targets are Hα emitters. In this case, Euclid will mea-
sure up to 30 million spectroscopic redshifts with an uncertainty
given by σz = 0.001(1 + z) (Pozzetti et al. 2016) and the main
observable will be the galaxy power spectrum. This power spec-
trum carries information about the distortions due to the Alcock-
Paczynski effect, the residual shot noise, the redshift uncertainty,
and the anisotropies due to redshift space distortions and on the
galaxy bias. Moreover, nonlinear effects that distort the shape
of the power spectrum, for instance, a nonlinear smearing of
the BAO feature, were also included in the matter power spec-
trum (Wang et al. 2013). In principle, other effects might also
include a nonlinear scale-dependent galaxy bias;d see for exam-
ple de la Torre & Guzzo (2012).

We use the same binning scheme as in Martinelli et al.
(2020), which is different from that of EC20; specifically, we
used nine equally spaced redshift bins of width ∆z = 0.1 instead
of four. By rebinning the data as given in EC20, we find the fol-
lowing specifications for the galaxy number density n(z) in units
of Mpc−3 and the galaxy bias b(z),

n(z) = {2.04, 2.08, 1.78, 1.58, 1.39, 1.15, 0.97, 0.7, 0.6} × 10−4,

b(z) = {1.42, 1.5, 1.57, 1.64, 1.71, 1.78, 1.84, 1.90, 1.96}.

This binning scheme allows for more data points and consider-
ably improves the machine learning analysis, as discussed below.
However, we note that we tested this particular choice against
that of EC20 in Martinelli et al. (2020), where we found no sta-
tistically significant difference.

In order to obtain the Fisher matrix for the full set of cos-
mological parameters, which is used to estimate the parameter
covariance matrix and propagate the error estimates, we fol-
lowed the procedure described in EC20. The analysis includes
the following parameters: the four shape parameters {ωm =
Ωm,0h2, h, ωb = Ωb,0h2, and ns}, the two nonlinear parameters
{σpandσv} (see EC20), and the five redshift-dependent parame-
ters {ln DA, ln H, ln fσ8, ln bσ8, and Ps}, evaluated in each red-
shift bin, where fσ8 ≡ f (z)σ8(z) is the linear growth rate times
σ8, which measures the amplitude of the linear power spectrum
at scales of 8h−1 Mpc, while bσ8 ≡ b(z)σ8(z) and Ps character-
ize the galaxy bias and the shot noise, respectively (see EC20).
In this way, we can derive the expected uncertainties from the
Euclid survey of the Hubble parameter H(z) and the angular
diameter distance DA(z) in each of the nine redshift bins, while
we marginalize over all the other parameters. The final Fisher
matrix in principle depends on the particular fiducial cosmology,
but here we assumed that this dependence is weak at best.

As the Euclid spectroscopic survey will only probe the red-
shift range z ∈ [0.9, 1.8], we will be limited in the range in which
both BAO and the SNe data are available. Thus, we comple-
mented our analysis by including the DESI survey, in order to
be able to reconstruct the null tests at the full range of the avail-
able SNe data. DESI has started survey operations in 2021 and is
scheduled to obtain optical spectra for tens of millions of quasars
and galaxies up to z ∼ 4, which will allow BAO and redshift-
space distortion analyses.

We followed the official DESI forecasts for the Hubble
parameter H(z) and the angular diameter distance DA(z) as
described in DESI Collaboration (2016). These forecasts have
also been derived following a Fisher matrix approach, described
in Font-Ribera et al. (2014), which is the full anisotropic galaxy
power spectrum, that is, measurements of the matter power spec-
trum as a function of the angle with respect to the line of sight,
but also redshift and wavenumber. Similarly to the Euclid fore-
casts, this approach also includes all the available information
from the two-point correlation function and not just the position
of the BAO peak.

Specifically, we considered the baseline DESI survey, cov-
ering 14 000 deg2 and targeting bright galaxies (BGs), luminous
red galaxies (LRGs), emission-line galaxies (ELGs), and quasars
in the redshift range z ∈ [0.05, 3.55], but with a precision that
will explicitly depend on the target population. First, the BGs
will be in the redshift range z ∈ [0.05, 0.45] given in 5 equally
spaced redshift bins, while the next two targets, the LRGs and
ELGs, will be in the range z ∈ [0.65, 1.85] in 13 equally spaced
redshift bins. Moreover, the Ly-α forest quasars will be given
in the range z ∈ [1.96, 3.55] in 11 equally spaced redshift bins.
Finally, we assumed that these measurements are not correlated
with each other.

In our analysis we only included the DESI data at late times
that do not overlap the Euclid points in order to avoid spurious
correlations between the two surveys. Furthermore, as the SNe
data from LSST + DESIRE will only reach redshift z = 1.6, we
only included the DESI data from the full BGs survey and the
LRGs and ELGs up to z = 0.9, thus leaving out the Ly-α forest
observations.

6. Results from the current data

In this section we now present the reconstructions of the null
tests of Sect. 3 using the currently available SNe and BAO data.
In this case, as the BAO data are coming from a plethora of dif-
ferent surveys and in a variety of different forms, that is, in terms
of dz(z), 1/dz(z), and so on, we cannot bin them without intro-
ducing new assumptions on their statistical properties. Thus, we
only present the results of the GA analysis, following the method
presented in Sect. 4.2. In order to simplify the discussion of the
results, we split the tests into groups of related tests.

Specifically, we show in Fig. 3 the GA reconstructions of the
null tests. In the first row from the top of Fig. 3 we show the
GA reconstructions of the two tests for the matter density, which
directly probe the Hubble expansion rate, namely OmH(z) given
by Eq. (11) (left) and Om(z) given by Eq. (12) (right). They agree
with a constant value and the ΛCDM within the 68% uncertain-
ties, but Om(z) is closer to the 68% confidence level boundary
because of the presence of the derivatives of the Hubble param-
eter, which amplify any deviations from the concordance value;
see Eq. (12).

In the second row from the top, we show the reconstructions
for the matter density tests that directly probe the cosmologi-
cal distances, namely OmdL(z) given by Eq. (22) (left panel) and
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Current data

Fig. 3. GA reconstructions of the null tests mentioned in Sect. 3 using the currently available BAO and Pantheon SNe data, as described in Sect. 4.
In all cases, the dashed line at zero corresponds to the best-fit ΛCDM model, described by Eq. (10) and the parameters (Ωm,0 = 0.303, h = 0.659),
the red line is the GA fit, and the orange shaded region corresponds to the 68% GA uncertainties.
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OmdA(z) given by Eq. (24) (right panel). They also agree well
with a constant value and the ΛCDM best fit within the errors.
Next, in the third row from the top, we show the two curva-
ture tests that probe the spatial homogeneity of the Universe,
namely z2Ωk(z) given by Eq. (25) (left panel) versus OK(z) given
by Eq. (13) (right panel). In this case, both tests are consistent
with a flat universe at the 68% confidence level, but the uncer-
tainties seem to increase with redshift for the z2Ωk(z) due to the
additional z2 term, which suppresses the singularity at late times,
as explained in Sect. 3. On the other hand, OK(z) is closer to the
68% confidence level boundary because it is complementary to
Om(z) and is subject to the same impact of the presence of the
Hubble derivative in their expression.

Furthermore, in the bottom row, we show the global shear
test Σ(z) (left panel) given by Eq. (19), which tests the Coperni-
can principle, and the r0(z) null test (right panel), which probes
for dark matter-dark energy interactions and is given by Eq. (17).
Again, both tests are consistent within the uncertainties with the
assumption of the Copernican principle and no interactions in
the dark sector. In some cases, for instance, in the OmH(z) and
the r0(z) tests, the error regions increase at low redshifts because
these tests are ill defined in the zero redshift limit, as discussed
in Sect. 3. Similarly, this also occurs for the z2Ωk(z) test, but
because of the additional z2, which regularizes the singularity at
z = 0, it now instead occurs at high redshifts.

Finally, as the GA does not to evaluate the statistical signif-
icance of a potential departure from the ΛCDM in a straightfor-
ward fashion, we also implemented a quantitative approach of
estimating the average deviation from the null hypothesis and
the average size of the errors across the redshift range of the
data. We also present the results of the mock data below, and
then this approach is particularly useful because it allows us
to obtain an overall improvement factor that forthcoming sur-
veys will add when they are compared to the current data of
this section. The technical details of this analysis are given in
Appendix A.

7. Forecast results

Following the approach described in Sect. 5, we now present the
constraint estimates of our null tests using the SNe and BAO
mock data for three different fiducial cosmologies based on the
vanilla flat ΛCDM model given by Eq. (10), the CPL parame-
terization given by Eq. (1), and the ΛLTB model described by
Eq. (34), assuming the fiducial values for the parameters shown
in Table 1. In our analysis we also consider two different cases.
In the first case, we only use the Euclid BAO data, spanning the
range z ∈ [0.9, 1, 8], in order to quantify the ability of the Euclid
survey alone to constrain any deviations from the null tests. In a
second case, we also include the DESI BAO data, which cover
the lower redshifts, as discussed in Sect. 5, in order to highlight
the synergies of the two surveys. Both cases include all SNe data
(Euclid + LSST), and similarly to Sect. 6, we group the plots by
row, splitting the tests into groups of related tests.

As in this case the mock BAO data are always given in terms
of the angular diameter distance DA(z) and the Hubble expan-
sion rate H(z), we are now also able to perform the binning anal-
ysis as discussed in Sect. 4.3 as a model-independent analysis
complementary to that of the GA. The binned data produced by
this approach are also used to obtain constraint estimates on the
considered tests, using a parametric approach based on a CPL-
like parameterization given by Eq. (32). However, that while we
apply the GA simultaneously to the full SNe and BAO mock
data, the PA is only applied on the binned data of each test.

Finally, as mentioned in the previous section, we also imple-
ment a quantitative approach of estimating the overall improve-
ment factors that are expected from forthcoming surveys when
compared to the current data of the previous section. The techni-
cal details of this analysis are given in Appendix A.

7.1. Results from the ΛCDM mocks

First, we present in Fig. 4 the results of the GA reconstruc-
tions of the null tests described in Sect. 3 for the Euclid-only
ΛCDM mocks and in Fig. 5 for all mock data (Euclid + DESI).
In all cases, both here and in the plots below, the dashed line
corresponds to the fiducial value of the test under considera-
tion for ΛCDM, the red line is the GA fit, the blue line is
the PA fit given by Eq. (32) of the binned mock data (black
points), while the orange and blue shaded regions correspond
to the 68% uncertainties of the GA and PA, respectively, and
the vertical dashed line at z = 0.9 indicates the minimum
redshift of the Euclid-only points. Because the binned mock
data include a random realization of error, they are expected
to fluctuate around the fiducial value. This is indeed seen in
Figs. 4 and 5.

All of the panels of Fig. 4 show that in all cases, both the
GA and the PA reconstructions along with the binned mock data
are able to correctly predict the fiducial model to within the 95%
uncertainties. Because of their agnostic nature, the uncertainties
of the GA reconstructions (orange shaded regions) are somewhat
larger than those of the PA (blue shaded regions), but they are
very similar to those of the binning (black points). An exception
to this is the OmdA(z) test, which in the case of the GA is domi-
nated by the systematic uncertainties of the SNe data because of
the joint reconstruction approach employed in this case, as was
also observed in Martinelli et al. (2020). In particular, as we fit
all the data (SNe and BAO) simultaneously, the errors of the GA
reconstructions for the distances are dominated by the measure-
ments with the larger (worst) errors, which in this case are the
SNe. Hence, using the GA reconstructions for the angular diam-
eter distance results in much larger errors than in the PA method.
The PA method does not suffer from this issue as the PA fits the
Taylor expansion directly only to the binned BAO angular diam-
eter data.

On the other hand, when we also include the DESI BAO data
at low and intermediate redshifts that do not overlap the Euclid
points, as shown in Fig. 5, we find that the uncertainties in the
case of the binning approach dramatically increase because the
constraining power of DESI is lower than that of Euclid at this
redshift range. This affects the PA (blue shaded regions), as in
some cases, such as for the Σ(z) and the OK(z) tests, it misses
the fiducial model (dashed line) by more than 1σ. The reason
for this is that the PA is anchored to the Euclid points at inter-
mediate redshifts, which have smaller error bars than the Euclid
redshifts, and because the PA parameterization lacks flexibility,
discrepancies appear at low redshifts. This also affects the GA
reconstruction for Σ(z), but in the remaining cases, the GA effi-
ciently predicts the correct cosmology as it uses the full SNe and
BAO data. In either case, these deviations are due to the presence
of derivatives in the null tests, which tend to cause instabilities
in the reconstructions.

Overall, after analyzing the ΛCDM mocks, we find that
Euclid, in combination with other surveys, will be able to
improve current constraints by approximately a factor of three
with the machine learning approach. The binning and paramet-
ric approach will provide an improvement of a further factor of
two over the GA results.
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mock Euclid-only data

Fig. 4. GA reconstructions of the null tests mentioned in Sect. 3 using the Euclid-only BAO and Euclid + LSST SNe ΛCDM mock data. In all
cases, the dashed line corresponds to the fiducial value of the corresponding test for ΛCDM, the red line is the GA fit, the blue line is the PA fit,
the shaded regions correspond to the 68% uncertainties, and the black points correspond to the binned Euclid mock data.
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mock Euclid+DESI+LSST data

Fig. 5. GA reconstructions of the null tests mentioned in Sect. 3 using the Euclid + DESI BAO and Euclid + LSST SNe ΛCDM mock data. In all
cases, the dashed line corresponds to the fiducial value of the corresponding test for ΛCDM, the red line is the GA fit, the blue line is the PA fit,
the shaded regions correspond to the 68% uncertainties, and the black points correspond to the binned Euclid and DESI mock data. The vertical
dashed line at z = 0.9 indicates the minimum redshift of the Euclid-only points.
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7.2. Results from the CPL mocks

Next, we present in Fig. 6 the results of the GA and parametric
reconstructions of the null tests for the Euclid-only CPL mocks.
In Fig. 7 we show them for all mock data (Euclid + DESI).

This case now is more interesting because the nature of the
DE model we chose means that many of the tests that probe the
expansion history of the Universe, such as the OmH(z), have a
distinct evolution with redshift. In the case of the Euclid-only
mocks shown in Fig. 6, both approaches overall predict the fidu-
cial cosmology within the errors, but in some cases, there is a
small 1σ deviation. This occurs, for example, in the case of the
OmH(z) test with the GA because the GA cannot anchor very
well at z ∼ 1 because it lacks points at low redshift. On the other
hand, in the case of the binning, for the Om(z) and OK(z) tests,
the presence of derivatives in the expressions causes more scatter
in the points, which is also propagated to the PA (blue line). This
also affects the r0(z) test, where the effect is further amplified by
the need to fix the baryon density parameter Ωb,0 to its Planck
best-fit value.

When we also include the DESI BAO data, see Fig. 7, we
can extend the reconstructions of the tests to low redshifts, where
many of the tests, such as the fiducial value of the OmH(z) test,
manifest large deviations from a constant value. In this case, we
find that while the GA follows the fiducial trend quite well, the
PA (blue line) is anchored to the higher redshift Euclid points,
as these have smaller uncertainties than the DESI points, and it
deviates from the fiducial model by several σ; a similar effect is
also visible for the r0(z) test. Finally, neither in Euclid-only nor
in Euclid + DESI BAO data is the global shear test affected as
expected, and the reconstructions are practically identical to the
reconstruction of the ΛCDM mocks.

7.3. Results from the ΛLTB mocks

Finally, we now present in Fig. 8 the results of the GA and PA
for the Euclid-only ΛLTB mocks and in Fig. 9 for all mock data
(Euclid + DESI). This particular case is even more interesting,
as all the tests present large deviations compared to the simple
ΛCDM case. This is due to the void profile we used. Specifi-
cally, when compared to the corresponding plots for the ΛCDM
mocks, the ΛLTB mocks exhibit large deviations from a constant
value at small redshifts, due to the shape of the void profile, in
particular in the cases of OmH(z), r0(z), Om(z) and OK(z).

Fig. 8 shows that in the case of the Euclid-only BAO data,
the PA given by Eq. (32) is not flexible enough to reproduce the
fiducial model; see, for example, the top left panel of Fig. 8 for
the OmH(z) reconstruction or the OmdL(z) and OmdA(z) tests in
the second row. The latter actually give very high values of the
matter density. This would be a smoking gun for the presence
of voids. In the case of the OK(z) test, the GA is much closer
to the fiducial model than to the PA, while for the r0(z) test, the
deviation is again partly due to fixing the value of the baryon
density, as before. When we also include the DESI BAO data,
the reconstructions of Fig. 9 clearly highlight the ability of our
approach to fully harness the power of the null tests of Sect. 3.

In particular, because of the choice of the ΛLTB profile, sev-
eral of the tests, namely OmH(z), OK(z), r0(z), and Σ(z), have
large deviations from a constant value, which the GA is able to
capture correctly. The simultaneous fitting of the data with the
GA, see Sect. 4.2, causes some correlations between the Hubble
parameter and the luminosity distance, however. As a result, the
fits in the redshift range covered by Euclid might differ between
the Euclid-only and Euclid + DESI cases because of the added

DESI BAO data at low z in the latter case, which may shift the
fit. This difference in the fits between the two data sets can be
seen, for example, in the OmdL(z) test shown in Fig. 8 and Fig. 9
for the two sets of mocks.

On the other hand, in these cases, the PA is again anchored
at high redshifts because the uncertainties of the Euclid data are
small, and because of its simple redshift evolution, it misses the
features at small z. The same but in the opposite direction occurs
for the reconstructions of the OmdL(z) and OmdA(z) tests, but in
this case, the GA and the parametric approach are always within
the errors.

8. Conclusions

We have constrained deviations from the Copernican principle,
the spatial homogeneity of the Universe on large scales, and from
the ΛCDM model using a set of null tests, that is, identities that
have to be equal to a constant value at all redshifts, using cur-
rent and forecast data. For the latter, we mainly focused on the
constraints coming from synergies between Euclid and other sur-
veys, namely DESI and LSST, using BAO and SNe data.

In Sect. 2 we presented several mechanisms for which fun-
damental assumptions of the standard cosmological model, such
as spatial homogeneity and the Copernican principle, may break
down, as in the case of Bianchi or LTB models, for instance.
For this reason, we employed two theory-agnostic reconstruc-
tion approaches, one approach based on machine learning, called
the GA, and another based on binning the data and then fit-
ting a simple CPL-like parameterization, which we called the
PA. These approaches allowed us to derive constraints on any
deviation from the standard model with only a few assumptions
on the redshift trends of these deviations. Avoiding any further
assumptions is particularly important as assuming a particular
model and then fitting the data introduces theoretical biases, and
as we have shown, makes it prone to misinterpreting deviations
from the standard model.

In order to probe for deviations from the Copernican prin-
ciple, the spatial homogeneity of the Universe on large scales,
and from the ΛCDM model we used a set of null tests pro-
posed over the years in the literature, which we summarized
in Sect. 3. These tests probe different aspects of the aforemen-
tioned assumptions and provide a holistic approach to quanti-
fying whether we might be able to detect any deviations from
them.

We first considered the currently available SNe and BAO
data. Using the GA, we found that within the errors, all the tests
are compatible with the null hypothesis, that is, there were no
deviations from the assumptions of the standard cosmological
model, see Sect. 6 and Fig. 3. This is to be expected to some
extent because the uncertainties of the currently available SNe
and BAO data are large, which makes it difficult to detect any
trends in the underlying cosmological model.

The fact that our current constraints are limited by the avail-
able BAO data highlights the importance of future full-sky sur-
veys, such as Euclid. Thus, we considered mock data based on
the specifications of Euclid and also allowed for synergies with
DESI and LSST, in order to forecast deviations from the assump-
tions of the standard cosmological model for three different fidu-
cial cosmologies: one cosmology based on the ΛCDM model,
one based on the CPL model for parameters at the 95% limit of
the current Planck best-fit, and finally, another mock based on
the ΛLTB model, which describes an inhomogeneous universe
with a cosmological constant, as described in Sect. 5.
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mock Euclid-only data

Fig. 6. GA reconstructions of the null tests mentioned in Sect. 3 using the Euclid-only BAO and Euclid + LSST SNe data for the CPL mock for
(w0,wa) = (−0.8,−1). In all cases, the dashed line corresponds to the fiducial value of the corresponding test for CPL, the red line is the GA fit, the
blue line is the PA fit, the shaded regions correspond to the 68% uncertainties, and the black points correspond to the binned Euclid mock data.
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mock Euclid+DESI+LSST data

Fig. 7. GA reconstructions of the null tests mentioned in Sect. 3 using the Euclid + DESI BAO and Euclid + LSST SNe data for the CPL mock for
(w0,wa) = (−0.8,−1). In all cases, the dashed line corresponds to the fiducial value of the corresponding test for CPL, the red line is the GA fit,
the blue line is the PA fit, the shaded regions correspond to the 68% uncertainties, and the black points correspond to the binned Euclid and DESI
mock data. The vertical dashed line at z = 0.9 indicates the minimum redshift of the Euclid-only points.
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mock Euclid-only data

Fig. 8. GA reconstructions of the null tests mentioned in Sect. 3 using the Euclid-only BAO and Euclid + LSST SNe data for the ΛLTB mock. In
all cases, the dashed line corresponds to the fiducial value of the corresponding test for the ΛLTB model, the red line is the GA fit, the blue line is
the PA fit, the shaded regions correspond to the 68% uncertainties, and the black points correspond to the binned Euclid mock data.
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mock Euclid+DESI+LSST data

Fig. 9. GA reconstructions of the null tests mentioned in Sect. 3 using the Euclid + DESI BAO and Euclid + LSST SNe data for the ΛLTB mock.
In all cases, the dashed line corresponds to the fiducial value of the corresponding test for the ΛLTB model, the red line is the GA fit, the blue line
is the PA fit, the shaded regions correspond to the 68% uncertainties, and the black points correspond to the binned Euclid and DESI mock data.
The vertical dashed line at z = 0.9 indicates the minimum redshift of the Euclid-only points.
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Performing a simultaneous fit of these mock SNe and BAO
data with the GA, we found, using the quantitative method
described in Appendix A, an improvement of a factor of three
in each case over the current constraints for most of the consis-
tency tests, assuming the ΛCDM mocks, as seen in Table A.1.
Alongside the GA, we also applied the PA, which relies on the
choice of a parameterization for the trend in redshift of the tests.
Overall, we find that the GA provides larger errors than the PA,
and this is for two main reasons. First, the GA is a nonparamet-
ric approach, thus is more agnostic, and it spans or explores the
much larger functional space, instead of just the usual parame-
ter space as in MCMCs. This tends to increase the errors; see
Nesseris & García-Bellido (2012).

Second, the choice of a parameterization for the PA creates
a lack of flexibility, which is particularly evident in the cases of
the CPL and ΛLTB mocks. This results in reconstructions that
deviate significantly from expectations. This lack of flexibility
also results in error bars that are tighter than those of the GA
because the posterior of PA parameters drops sharply moving
away from their best fit. These issues can in principle be avoided
by increasing the flexibility of the PA, for example, consider-
ing higher-order redshift terms in Eq. (32). However, in realistic
situations, the degree of complexity needed for the reconstruc-
tion would be unknown, and we decided here to use a common
way to parameterize a redshift trend. This stresses even more
strongly the advantage of the GA, which does not require any a
priori assumption to obtain the required level of flexibility.

Finally, we limited our analysis to the ΛCDM, CPL, and
ΛLTB because it is currently not feasible to go beyond these
models, for example, by considering extensions such as the
Bianchi type-I or back-reaction models. We lack validated codes
that might be used to estimate the necessary functions (distances
and expansion rates). It is therefore quite difficult to test the
response of our null tests to these extensions of the standard
cosmological model, but with new developments in theoretical
model simulation, we could explore them in the future.

In summary, this work highlights the benefits of synergies
between the Euclid BAO survey and external probes in con-
straining any deviations from the fundamental assumptions of
the standard cosmological model. In particular, we have demon-
strated that such a BAO survey will make it possible to constrain
deviations from the Copernican principle, the spatial homogene-
ity of the Universe, and the ΛCDM model at an unprecedented
level in the near future using both non-parametric and parame-
terized approaches.
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Appendix A: Improvement factors

Here we briefly present our method for quantifying the improve-
ment factors expected from the forthcoming surveys compared
to the currently available data. We use the GA and two compli-
mentary approaches to do this.

First, we calculate the average deviation of the GA best-fit in
units of sigma values from the null hypothesis (either the best-
fitting ΛCDM or the fiducial ΛCDM, depending on the data)
over the whole redshift range of the data for each of the tests.
Then we estimate the ratio of the average deviations for the cur-
rent and mock data in order to quantify the improvement brought
by Euclid. In particular, assuming the GA produces a reconstruc-
tion function for one of the null tests, denoted by fGA(z) along
with some error σ fGA (z), we can quantify the average absolute
deviation in sigma values from the null hypothesis as

〈Dnull〉 =
1

zmax − zmin

∫ zmax

zmin

dz

∣∣∣∣∣∣ fGA(z) − fnull(z)
σ fGA (z)

∣∣∣∣∣∣ , (A.1)

where fnull(z) is the value of the null test for the null hypothe-
sis, and zmin, zmax are the minimum and maximum values of the
redshift range of the data.

Second, for consistency with previous analyses (see
Martinelli et al. 2020), we also estimate the average size of the
errors over the whole redshift range, which is similar to a figure
of merit, thus providing an estimate by how much forthcoming
surveys will improve the errors in the reconstructions of the test.
Specifically, to quantify this improvement, we calculate the aver-
age size of the errors in the redshift range of the data as follows:

〈σGA〉 =
1

zmax − zmin

∫ zmax

zmin

dzσ fGA (z). (A.2)

In Table A.1 we present the improvement factors for the aver-
age absolute deviation in sigma values from the null hypothe-
sis 〈Dnull〉 given by Eq. (A.1) and the average size of the errors
〈σGA〉 given by Eq. (A.2) in the redshift range of the current
and mock data, along with the corresponding improvement. In
the last two rows, we also present the average and median
improvement factor across all the tests. Specifically, as listed in
Table A.1, data from forthcoming surveys will bring an improve-
ment factor of about a factor of three or more for most null
tests. In order to reduce the possible double counting, as some

Table A.1. Improvement factors for the average absolute deviation in
sigma values from the null hypothesis 〈Dnull〉 given by Eq. (A.1) and the
average size of the errors 〈σGA〉 given by Eq. (A.2) in the redshift range
of the current and mock data, along with the corresponding improve-
ment ratio. In the last two rows, we also present the average and median
improvement factor for all the tests.

Test Data/ratio 〈Dnull〉 〈σGA〉

Current 0.081 0.260
OmH(z) Euclid + DESI + LSST 0.181 0.004

ratio 0.450 73.497
Current 0.238 0.156

Σ(z) Euclid + DESI + LSST 0.199 0.048
ratio 1.195 3.218

Current 0.093 0.557
r0 Euclid + DESI + LSST 0.180 0.007

ratio 0.517 76.338
Current 0.422 0.039

OmdL Euclid + DESI + LSST 0.119 0.080
ratio 3.546 0.492

Current 0.422 0.039
OmdA Euclid + DESI + LSST 0.119 0.080

ratio 3.546 0.492
Current 0.251 0.864

z2Ωk(z) Euclid + DESI + LSST 0.126 0.384
ratio 1.990 2.248

Current 0.593 0.384
OK(z) Euclid + DESI + LSST 0.080 0.098

ratio 7.457 3.918
Current 0.450 0.175

Om(z) Euclid + DESI + LSST 0.087 0.040
ratio 5.147 4.413

Summary Average 2.981 20.577
Median 2.768 3.568

of the tests are strongly correlated with each other, we also con-
sider the median of the ratios of the improvement factors of the
tests, which also gives an improvement of about a factor of three.
Hence, in order to be conservative, we quote a factor of three as
our final improvement factor when we compare the reconstruc-
tions of the null tests using the GA for the current and forthcom-
ing data.
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