566 research outputs found

    EFFECT OF MELTING PROCESSING ON TENSILE PROPERTIES AND MICROSTRUCTURE OF NEW RAFM STEEL

    Get PDF
    ABSTRACT All of the RAFM steels only safely used under 550 ºC , that is not enough for the next reactor. An new RAFM steel was melted by non-vacuum induction melting (VIM) and electroslag remelting (ESR), followed by hot-forging and rolling into rods and plates. In this paper, we investigated the effect of thermal ageing treatment on tensile properties of the rods and plates. The microstructure was studied by OM (optics micrograph) and scanning electron microscopy (SEM). The results showed that by using the same heat treatment process, the tensile strength of the samples was 680MPa, the total elongation was 31%, which were better than the CLAM steel whose tensile strength and total elongation were 668MPa and 25% respectively. The difference between the transverse and the longitudinal properties was reduced markedly. So the ESR played an important part in improving the mechanical properties

    Galactosylated poly(ethylene glycol)-b-poly (l-lactide-co-β-malic acid) block copolymer micelles for targeted drug delivery: preparation and in vitro characterization

    Get PDF
    Biodegradable galactosylated methoxy poly(ethylene glycol)/poly(l-lactide-co-β-malic acid) (Gal-PEG-b-PLMA) block copolymer micelles were successfully prepared by a solvent diffusion method, and could efficiently encapsulate doxorubicin. The Gal-PEG-b-PLMA micelles before and after doxorubicin loading were characterized by size, morphology, in vitro drug release, and in vitro cytotoxicity in HepG2 cells. Transmission electron microscopy and dynamic light scattering results showed that the empty and doxorubicin-loaded micelles were approximately spherical in shape and had mean sizes of about 72 nm and 85 nm, respectively. In vitro release behavior of doxorubicin from the micelles was pH-dependent, with obviously faster release rates at mildly acidic pH 4.5 and 5.5 compared with physiologic pH 7.4. Methylthiazoletetrazolium assay and flow cytometric analysis indicated that the doxorubicin-loaded galactosylated micelles exhibited a greater growth-inhibitory effect on HepG2 cells than the nongalactosylated doxorubicin-loaded micelles, and induced S phase cell cycle arrest. Confocal laser scanning microscope observations revealed that the galactosylated micelles could be efficiently internalized by HepG2 cells through receptor-mediated endocytosis. The results suggest that Gal-PEG-b-PLMA copolymer micelles are a promising carrier system for targeted drug delivery in cancer therapy

    Effects of Tire Pressures and Test Temperatures on Permanent Deformation of Direct Coal Liquefaction Residue Mixture

    Get PDF
    The main objective of this research is to investigate the permanent deformation of asphalt mixtures containing direct coal liquefaction residue (DCLR) under various tire pressures and temperatures. Three types of asphalt mixtures, including control/DCLR/composite-DCLR modified asphalt mixture, were prepared by the Marshall design method. The rutting test was conducted under a tire pressure range of 0.7–1.0 MPa with a 0.1-MPa interval and at a temperature range of 55–70°C with a 5°C interval. Moreover, the dynamic stability and rutting depth of three asphalt mixtures were obtained to evaluate their resistance of permanent deformation. It was found that the rutting resistance of three asphalt mixtures declines with the increased tire pressures and temperatures. The asphalt mixture containing DCLR has a higher dynamic stability and lower rutting depth compared to the control asphalt mixture under the same conditions. Furthermore, the rutting resistance of composite-DCLR modified asphalt mixture is better than that of DCLR modified asphalt mixture. It indicates that the composite-DCLR is favorable for the improvement of rutting resistance of asphalt mixture. Moreover, the analysis of variance was applied, which analysis results showed that the rutting resistance of asphalt mixture is more sensitive to temperature than tire pressure. Based on the least-squares procedure, the relationship between dynamic stability and rutting depth was obtained, and the accuracy of the prediction is acceptable

    Adhesion evaluation of asphalt-aggregate interface using surface free energy method

    Get PDF
    The influence of organic additives (Sasobit and RH) and water on the adhesion of the asphalt-aggregate interface was studied according to the surface free energy theory. Two asphalt binders (SK-70 and SK-90), and two aggregate types (limestone and basalt) were used in this study. The sessile drop method was employed to test surface free energy components of asphalt, organic additives and aggregates. The adhesion models of the asphalt-aggregate interface in dry and wet conditions were established, and the adhesion work was calculated subsequently. The energy ratios were built to evaluate the effect of organic additives and water on the adhesiveness of the asphalt-aggregate interface. The results indicate that the addition of organic additives can enhance the adhesion of the asphalt-aggregate interface in dry conditions, because organic additives reduced the surface free energy of asphalt. However, the organic additives have hydrophobic characteristics and are sensitive to water. As a result, the adhesiveness of the asphalt-aggregate interface of the asphalt containing organic additives in wet conditions sharply decreased due to water damage to asphalt and organic additives. Furthermore, the compatibility of asphalt, aggregate with organic additive was noted and discussed

    Preparation and properties of asphalt binders modified by THFS extracted from direct coal liquefaction residue

    Get PDF
    This paper aims to study the preparation and viscoelastic properties of asphalt binder modified by tetrahydrofuran soluble fraction (THFS) extracted from direct coal liquefaction residue. The modified asphalt binders, which blended with SK-90 (control asphalt binder) and 4%, 6%, 8% and 10% THFS (by weight of SK-90), were fabricated. The preparation process for asphalt binder was optimized in terms of the orthogonal array test strategy and gray correlation analysis results. The properties of asphalt binder were measured by applying Penetration performance grade and Superpave performance grade specifications. In addition, the temperature step and frequency sweep test in Dynamic Shear Rheometer were conducted to predict the rheological behavior, temperature and frequency susceptibility of asphalt binder. The test results suggested the optimal preparation process, such as 150 °C shearing temperature, 45 min shearing time and 4000 rpm shearing rate. Subsequently, the addition of THFS was beneficial in increasing the high-temperature properties but decreased the low-temperature properties and resistance to fatigue. The content analysis of THFS showed the percentage of 4~6% achieved a balance in the high-and-low temperature properties of asphalt binder. The asphalt binder with higher THFS content exhibited higher resistance to rutting and less sensitivity to frequency and temperature

    A novel method for metal–diamond composite coating deposition with cold spray and formation mechanism

    Get PDF
    This paper describes the application of cold spray to the deposition of a diamond grade pre-coated with Cu and Ni. This is the first time that pre-coated diamond powders are used as the sole feedstock without the addition of binders (ductile phases) in cold spraying. The experimental results showed that it was possible to manufacture thick metal–diamond composite coatings onto an Al alloy substrate with high diamond fraction in the coating and without phase change. Results from this paper also have demonstrated a new methodology for the deposition of metal–diamond/ceramic composite coating with the cold spray technique

    Assessment of chemotherapy response in non-Hodgkin lymphoma involving the neck utilizing diffusion kurtosis imaging: a preliminary study

    Get PDF
    PURPOSE:We aimed to examine the utility of non-Gaussian diffusion kurtosis imaging (DKI) for assessment of chemotherapy response in patients with cervical (neck) non-Hodgkin lymphoma (NHL).METHODS:Patients with cervical NHL underwent 3.0 T magnetic resonance imaging with maximal b value of 2000 s/mm2 at baseline and seven days after chemotherapy onset. Apparent diffusion coefficient (ADC) value and diffusion kurtosis imaging maps for diffusion coefficient (D) and kurtosis (K) were calculated. Based on clinical examination, laboratory screening, and PET/CTs, patients were classified as responders or nonresponders.RESULTS:Twenty-six patients were enrolled. Among them, 24 patients were classified as responders and two as nonresponders. For responders, mean follow-up ADC and D increased significantly compared with baseline (ADC: 0.92±0.11 ×10-3 mm2/s vs. 0.68±0.11 ×10-3 mm2/s; D: 1.47±0.32 ×10-3 mm2/s vs. 0.98±0.21 ×10-3 mm2/s, P < 0.001 for both). Mean follow-up K decreased significantly compared with baseline (1.14±0.10 vs. 1.47±0.19, P < 0.001) for responders. Dratio showed significant positive correlation and high agreement with ADCratio (r = 0.776, P < 0.001). Likewise, Kratio showed significant negative correlation and high agreement with ADCratio (r = -0.658, P < 0.001).CONCLUSION:The new DKI model may serve as a new biomarker for the evaluation of early chemotherapy response in NHL
    • …
    corecore