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Abstract: This paper describes the application of cold spray to the deposition of a diamond grade pre-coated 10 

with Cu and Ni. This is the first time that pre-coated diamond powders are used as the sole feedstock without the 11 

addition of binders (ductile phases) in cold spraying. The experimental results showed that it was possible to 12 

manufacture thick metal-diamond composite coatings with high diamond fraction in the coating but without 13 

phase change. Results from this paper also have demonstrated a new methodology for the deposition of metal-14 

diamond/ceramic composite coating with cold spray technique. 15 
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 18 

Synthetic diamond coatings have been used extensively to improve the properties of various substrates for 19 

manufacturing processes, due to favourable material properties such as high hardness, improved wear resistance, 20 

excellent thermal conductivity, chemical inertness and low coefficient of friction. Furthermore, Diamond like 21 

Carbon (DLC), which has a structure between that of diamond and graphite, has been used as a cheaper 22 

alternative to synthetic diamond while still maintaining similar material properties. These coatings are 23 

commonly applied using physical [1-3] or chemical vapour deposition [4]. More recently, a novel ball impact 24 

process was used to fabricate DLC coatings on stainless steel substrates in an atmosphere of methane gas [5]. In 25 

this technique, metal or ceramic balls and powder particles are placed inside a vibration chamber. The vibration 26 

causes the balls to accelerate and repeatedly impact the inner metal surface of the chamber. As a result, the 27 

metal surface is rapidly coated with the powder particles. However, the current methods to manufacture 28 
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diamond-based coatings present several disadvantages. They are only suitable for small scale components with 29 

limited possible feedstock/substrate combinations, they typically require complex and expensive pre-processing 30 

steps, or they involve the use of toxic waste products. An industrial push therefore exists to move from current 31 

technologies to alternative methods with higher efficiency. 32 

 33 

Cold Spray (CS) is a relatively new deposition method, whereby materials can be deposited onto surfaces in a 34 

solid-state manner, without heating above the melting temperature [6-8]. In this process, the feedstock material 35 

(in the form of powder) is accelerated to supersonic speeds in a converging-diverging nozzle using an inert 36 

carrier gas. The gas and powder mixture is fed at high pressure into the nozzle inlet and made to expand in the 37 

internal channel; powder speed levels in excess of 1000 m/s can be reached at the nozzle exit. When particles 38 

impact on a surface a plastic deformation process occurs. Above a critical impact velocity for the powder-39 

substrate combination the particles will bond to the surface, and form a coating. CS has been tested with a 40 

number of materials, including high performance metals and alloys [6-9], composite materials [10, 11] and also 41 

pure ceramics [12, 13]. Using CS it is possible to produce oxygen- and thermal- sensitive coatings on different 42 

substrates without the necessity of special environmental conditions.  43 

 44 

A major technical disadvantage of CS is the reliance on plastic deformation to form a coating; typically only 45 

ductile materials can be processed. The formation of hard or ceramic coatings (to include diamond) is difficult 46 

and possible only with the addition of a supplementary binder to the feedstock, typically a soft metal. This 47 

binder is often required in large volume fractions. It has been reported that, in the cold sprayed metal-diamond 48 

composite coating, the fraction of diamond in the as-sprayed coating was difficult to retain the same fraction of 49 

the original feedstock, normally lower than 40%-50% [14, 15]. A study by Suo et al. reported that ball-milled 50 

metal-diamond feedstock was able to greatly retain the fraction of diamond particles in the coating, while it led 51 

to very small-size diamond distribution in the coating at the same time [16]. A large number of interfaces 52 

between hard and soft phases in the coating would act as the barrier for thermal conduction and thus may lower 53 

the coating performance. Recently, Na et al. used Ni-coated diamond powders mixed with bronze to produce 54 

metal-diamond composite coating, and the result indicated that this special feedstock resulted in more uniform 55 

diamond distribution and higher deposition efficiency of the diamond phase because the surrounding Ni layer on 56 

the diamond surface acts as a binder to the soft phase [17]. Although the existing works have successfully 57 

produced metal-diamond composite coatings, it was noticed that dilute metal powders must be used as a binder 58 



phase in the feedstock leading to strong miss-matches in ration composition between the feedstock and the 59 

coating. In the current work, for the first time, the dilute metal powder is not included in the feedstock. Instead 60 

the hard diamond powder is pre-coated with a thin layer of ductile metal and coated directly, which was not 61 

previously attempted. The rationale behind the study is directly linked to the hypothesis that the diamond alone 62 

would not be processable with CS, but the addition of a ductile metal interface between particles might allow for 63 

CS deposition to occur. It is demonstrated in this paper that deposition occurs in a more efficient manner when 64 

compared against the conventional pre-mixing of ductile and hard-phases prior to spraying; in particular this 65 

strategy has allowed to maintain practically unchanged the diamond concentration from the feedstock to the 66 

coating; hence without losses in hard-phase content.     67 

 68 

A bespoke cold spray system consisting of a commercial high pressure powder feeder (wheel type, Uniquecoat 69 

Technologies, US) and a gas system capable of delivering pressure ranges of 0.5 - 3.5 MPa at the nozzle inlet. 70 

The converging-diverging nozzle used for the diamond tests is an in-house design, approximately 190 mm long 71 

with a throat or restriction cross-sectional diameter of 2mm, and an exit diameter of 6mm. The nozzle is made 72 

out of WC, so as to minimize abrasive wear of the nozzle during spraying operations. The substrate is placed on 73 

a CNC X-Y stages system, with the nozzle held stationary during spraying operations. Helium at room 74 

temperature was used as a carrier gas, using a nozzle inlet pressure of 2.0 MPa, with a nozzle standoff distance 75 

of 40 mm and a substrate traverse speed of 20 mm/s. The substrate material was a flat Al6082 T6 plate (3.1mm 76 

thick), while the powder feeder wheel speed was set to 35% of its maximum. No surface pretreatment was 77 

undertaken prior to the coating operation. A SEM equipped with EDX unit (Carl Zeiss ULTRA, Germany) was 78 

used for the coating and powder observation and element analysis, while a FIB system (DB235, FEI Strata, 79 

USA) was used to investigate the thickness and microstructure of the powder. The cross-section of the coating 80 

was obtained by fracture, removing the need for polishing steps which would likely pull out any diamond 81 

contained within the coating. Using this method it was possible to preserve and observe critical topological 82 

information. The feedstock and coatings were examined by a X-Ray diffractometer system (Siemens D500, 83 

Germany) operating at 40 kV and 30 mA with Cu Kα radiation at a wavelength of 0.1542 nm. The scan was 84 

conducted in 2θ mode and spanned across a range of 20° to 80° with a step resolution of 0.02° per second. 85 

 86 

The powder used in these tests is a commercial grade of diamond (Element Six, PDA C50, 270-325 US mesh) 87 

with an electroless Ni and Cu clad of approximately 2-5 µm in thickness. Before adding the Cu clad, the 88 



diamond is Ni coated. A SEM picture of the diamond particles is shown in Figure 1a. The metal clad on the 89 

outer surface of each grit is, in reality, the combination of Ni and Cu for a total weight distribution between 90 

metal phases and diamond of approximately 50-50. This ratio can slightly vary from particle to particle. Particle 91 

size analysis, showed that the particles are quite large in diameter compared to typical cold spray powders, with 92 

a D10 of 56.0 µm, D50 of 73.8 µm and D90 of 96.7 µm obtained using a size analyser by Malvern. The thickness 93 

of the Ni and Cu layers can be seen in Figb, where the layer has debonded from the diamond particle during FIB 94 

milling, and two distinct layers can be clearly seen in the coating. EDX analysis confirms that these layers 95 

comprise an approximately 0.5 µm thick layer of Ni between the diamond and Cu, with a 1.5 – 2.0 µm thick 96 

layer of Cu on the surface. The density of Cu, Ni and diamond are 8960, 8908 and 3520 kg/m3. 97 

    98 

Fig.1 (a) SEM image of powder used. (b) Single particle image after FIB milling, showing Ni and Cu 99 

layers. 100 

 101 
It was observed in preliminary trials that for nozzle inlet pressures lower than 2 MPa no substantial deposition 102 

occurred. The peak coating thickness for a single pass coating was measured to be approximately 0.9 mm at an 103 

inlet pressure of 2.0MPa. Figure 2 shows a back-scattered SEM image of the coating cross-section, and a single 104 

diamond particle after chemical etching of the deposit. The darker regions indicates the abundant presence of 105 

carbon (as expected), which has a low atomic number (Z=6), and lighter regions indicating Cu and Ni (the 106 

metallic coating), which have higher atomic numbers (Z=28, 29 respectively). The coating density appears high, 107 

though no direct analysis of coating density was performed for the scope of this study. A follow on EDX 108 

analysis was carried out to reveal the chemical composition of the coating. The analysis showed that for the top 109 

surface of the coating (uttermost layer) the carbon content was 45.74% by weight, with 22.15% Ni comprising 110 

22.15% and Cu making up 29.74%, with the remainder trace elements to include a small amount of oxygen. A 111 

similar analysis for the cross-section of the coating showed 56.25% carbon, 13.56% Ni and 25.86% Cu. The 112 

higher level of carbon in the cross-section may indicate that the diamond particles tend to embed below the 113 



surface of the metal during coating. These results are very much in agreement with the specifications provided 114 

by the powder manufacturer of 50:50 diamond:Cu/Ni by weight. This indicates that the fraction of the diamond 115 

in the coating has no loss. Also, the composite coating obtained in this work has the largest percentage of 116 

diamond compared to previous reported results. However, it is evident from Figure 2a that some of diamond 117 

particles are of smaller size than would be expected given the particle size analysis earlier, which means some of 118 

the large diamond particles have fractured during the deposition process.  From Figure 2b, such fracture of the 119 

diamond particle due to the extremely large impact stress can be clearly observed. This correlates with results 120 

reported in previous studies [14].  Thermal processing of diamond can easily induce graphitization of the same; 121 

Figure 3 shows a comparison of the XRD spectra of the feedstock and the resultant coating. The aperture size of 122 

the XRD beam was 12 mm x 0.4 mm. The sample stage was rotated on measuring to avoid issues with specific 123 

orientations and grain sizes and hence has a spot size of 12 mm in diameter. It is clear graphitization of the 124 

diamond did not take place during the deposition process as it was possible to keep the working temperatures 125 

low enough (CS typically does not require the addition of strong heat inputs). This is not typically the case; in a 126 

recent work published by Yao at al. [18] serious graphitization had occurred in diamond/Ni60 deposition using 127 

Laser Cladding due to the high level of temperature. From Figure 3, there is also a reduction in the D220 in the 128 

coated sample which could be a result of the aforementioned fragmentation of the diamond during deposition. 129 

Peaks pointing to the substrate material (Sub) are also visible in the coating spectrum due to overlaps with the 130 

interface region.  131 

 132 

Fig. 2  (a) SEM backscatter image of coating, showing fractured diamond particles. (b) Etched coating 133 

revealing diamond grains. 134 



 135 

Fig. 3  Comparison of XRD spectra between feedstock and coating. Sub, D, N and Cu refer to substrate, 136 

diamond, Ni and Cu, respectively. 137 

Conventional hard/soft composite cold spray coatings are created by hard particles embedding within a coating 138 

formed from the softer material. However, when the hard particles are coated with the softer material with no 139 

other dilute metal phase added, the hard particles do not have a softer coating material to embed into, as would 140 

occur in a diamond composite coating fabricated by mechanically mixed feedstock. For the coating detailed in 141 

this work, a unique coating formation mechanism is proposed. Figure 4 shows a schematic of this coating 142 

formation mechanism. When the particle impacts on the formed coating, the thin Cu/Ni layer (soft phase) 143 

experiences strong plastic deformation, causing extrusion from the central region. The diamond which was 144 

originally enclosed in the particle may impact with a diamond particle currently embedded within the coating. 145 

Previous modelling results have indicated that the stress during the impact process between two metal-coated-146 

diamond particles would reach 11.32GPa, much larger than the fracture stress of diamond (5.8GPa) [17]. In this 147 

case, extremely high impact stress causes the incident diamond particle to shatter into many small pieces. These 148 

small diamond particles still possess high kinetic energy, allowing them to penetrate into and distribute in the 149 

soft metal phase of the coating, as suggested by the increased carbon percentage in the EDX results on the cross 150 

section. The metal-diamond coating is then formed in this manner, with the fracture of the diamond causing the 151 

formation of the composite coating. In the absence of the metal dilute phase it is forecasted that diamond 152 

particles would still shatter at impact (the impact energy would be roughly the same), but no coating could form 153 

under CS working conditions. In some circumstances, diamond particles were not completely fractured into 154 

pieces, as can be seen in Figure 2. This shows that large particles also have chance to embed into the coating 155 



where the percentage of soft phase is relatively high. A very critical role is therefore played by the soft-phase. 156 

There is no doubt there will be a minimum thickness by which shattering of the diamond happens, and the 157 

coating can still form without diamond lossess by rebound effects. Under this conditions the diamond % in the 158 

coating would be maximum. However, one can think of the most exterme case where there is no soft-phase; in 159 

this scenario the diamond is not processable with CS.    160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

Fig. 4 Metal-coated Diamond composite coating formation mechanism 168 

In summary, a preliminary investigation into the feasibility of depositing diamond coatings onto surfaces using 169 

cold spray was carried out. It was possible to achieve diamond deposition using a new methodology, using 170 

particles which have been pre-coated with a ductile phase (Cu/Ni) so as to allow for direct coating using cold 171 

spray. SEM and EDX experimental results have demonstrated the transfer of properties from the feedstock to 172 

the coating. The measured weight fraction of diamond in the coating exceeded 50%, a result which has not 173 

previously achieved with cold spray using pre-mixed feedstocks. The coating formation mechanism was 174 

observed to depend upon the shattering of the diamond particles. Diamond has a high thermal conductivity, but 175 

is difficult to deposit over large areas or at high deposition rates. This study has therefore demonstrated a new 176 

method for the deposition of non-ductile materials onto surfaces.  177 
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