9 research outputs found

    Spironolactone and colitis: Increased mortality in rodents and in humans

    Full text link
    Background: Crohn's disease causes intestinal inflammation leading to intestinal fibrosis. Spironolactone is an antifibrotic medication commonly used in heart failure to reduce mortality. We examined whether spironolactone is antifibrotic in the context of intestinal inflammation. Methods: In vitro, spironolactone repressed fibrogenesis in transforming growth factor beta (TGF‐β)‐stimulated human colonic myofibroblasts. However, spironolactone therapy significantly increased mortality in two rodent models of inflammation‐induced intestinal fibrosis, suggesting spironolactone could be harmful during intestinal inflammation. Since inflammatory bowel disease (IBD) patients rarely receive spironolactone therapy, we examined whether spironolactone use was associated with mortality in a common cause of inflammatory colitis, Clostridium difficile infection (CDI). Results: Spironolactone use during CDI infection was associated with increased mortality in a retrospective cohort of 4008 inpatients (15.9% vs. 9.1%, n = 390 deaths, P < 0.0001). In patients without liver disease, the adjusted odds ratio (OR) for inpatient mortality associated with 80 mg spironolactone was 1.99 (95% confidence interval [CI]: 1.51–2.63) In contrast to the main effect of spironolactone mortality, multivariate modeling revealed a protective interaction between liver disease and spironolactone dose. The adjusted OR for mortality after CDI was 1.96 (95% CI: 1.50–2.55) for patients without liver disease on spironolactone vs. 1.28 (95% CI: 0.82–2.00) for patients with liver disease on spironolactone when compared to a reference group without liver disease or spironolactone use. Conclusions: We propose that discontinuation of spironolactone in patients without liver disease during CDI could reduce hospital mortality by 2‐fold, potentially reducing mortality from CDI by 35,000 patients annually across Europe and the U.S. (Inflamm Bowel Dis 2011;)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92045/1/21929_ftp.pd

    The peatland map of Europe

    Get PDF
    Based on the ‘European Mires Book’ of the International Mire Conservation Group (IMCG), this article provides a composite map of national datasets as the first comprehensive peatland map for the whole of Europe. We also present estimates of the extent of peatlands and mires in each European country individually and for the entire continent. A minimum peat thickness criterion has not been strictly applied, to allow for (often historically determined) country-specific definitions. Our ‘peatland’ concept includes all ‘mires’, which are peatlands where peat is being formed. The map was constructed by merging national datasets in GIS while maintaining the mapping scales of the original input data. This ‘bottom-up’ approach indicates that the overall area of peatland in Europe is 593,727 km². Mires were found to cover more than 320,000 km² (around 54 % of the total peatland area). If shallow-peat lands (< 30 cm peat) in European Russia are also taken into account, the total peatland area in Europe is more than 1,000,000 km2, which is almost 10 % of the total surface area. Composite inventories of national peatland information, as presented here for Europe, may serve to identify gaps and priority areas for field survey, and help to cross-check and calibrate remote sensing based mapping approaches

    The peatland map of Europe

    No full text
    Based on the 'European Mires Book' of the International Mire Conservation Group (IMCG), this article provides a composite map of national datasets as the first comprehensive peatland map for the whole of Europe. We also present estimates of the extent of peatlands and mires in each European country individually and for the entire continent. A minimum peat thickness criterion has not been strictly applied, to allow for (often historically determined) country-specific definitions. Our 'peatland' concept includes all 'mires', which are peatlands where peat is being formed. The map was constructed by merging national datasets in GIS while maintaining the mapping scales of the original input data. This 'bottom-up' approach indicates that the overall area of peatland in Europe is 593,727 km(2). Mires were found to cover more than 320,000 km (2) (around 54 % of the total peatland area). If shallow-peat lands (<30 cm peat) in European Russia are also taken into account, the total peatland area in Europe is more than 1,000,000 km(2), which is almost 10 % of the total surface area. Composite inventories of national peatland information, as presented here for Europe, may serve to identify gaps and priority areas for field survey, and help to cross-check and calibrate remote sensing based mapping approaches

    The peatland map of Europe

    No full text
    Based on the ‘European Mires Book’ of the International Mire Conservation Group (IMCG), this article provides a composite map of national datasets as the first comprehensive peatland map for the whole of Europe. We also present estimates of the extent of peatlands and mires in each European country individually and for the entire continent. A minimum peat thickness criterion has not been strictly applied, to allow for (often historically determined) country-specific definitions. Our ‘peatland’ concept includes all ‘mires’, which are peatlands where peat is being formed. The map was constructed by merging national datasets in GIS while maintaining the mapping scales of the original input data. This ‘bottom-up’ approach indicates that the overall area of peatland in Europe is 593,727 km2. Mires were found to cover more than 320,000 km2 (around 54 % of the total peatland area). If shallow-peat lands (&amp;lt; 30 cm peat) in European Russia are also taken into account, the total peatland area in Europe is more than 1,000,000 km2 which is almost 10 % of the total surface area. Composite inventories of national peatland information, as presented here for Europe, may serve to identify gaps and priority areas for field survey, and help to cross-check and calibrate remote sensing based mapping approaches. © 2017 International Mire Conservation Group and International Peatland Society
    corecore