7 research outputs found

    Tachyonic media in analogue models of special relativity

    Get PDF
    In sonic models of special relativity, the fact that the sonic medium violates (ordinary) Lorentz symmetry is apparent to observers external to the sonic medium but not to a class of observers existing within the medium itself. We show that the situation is symmetric: internal observers will judge physics in the external laboratory to violate their own sonic Lorentz symmetries. We therefore treat all observers on an equal footing such that each is able to retain a commitment to their own Lorentz symmetries. We then generalize beyond the case of subsystem-environment decompositions to situations in which there exist multiple phonon fields, all obeying Lorentz symmetries but with different invariant speeds. In such cases, we argue that all observers have freedom to choose which field is symmetry preserving, and so -- in a certain precise sense -- which other fields are perceived as having an 'ether.' This choice is influenced -- but not determined -- by a desire for simplicity in the description of physical laws. Sending information faster than sound serves as a model of tachyonic signalling to a distant receiver. Immutable causality of the laboratory setup when perceived externally to a sonic medium manifests internally through the confinement of the tachyons to an apparent ether (with a rest frame), which we call a 'tachyonic medium,' thereby preventing tachyonic exchange from emulating the scenario of a round-trip signal travelling into an observer's past causal cone. The assignment of sonic-Lorentz-violating effects to fields that obey 'photonic' Lorentz symmetries thus ensures that causality associated with the 'sonic' Lorentz symmetries is preserved.Comment: (v2) minor changes after peer review; (v1) 13 pages, 4 figure

    Comparison of |Q|=1 and |Q|=2 gauge-field configurations on the lattice four-torus

    Get PDF
    It is known that exactly self-dual gauge-field configurations with topological charge |Q|=1 cannot exist on the untwisted continuum 4-torus. We explore the manifestation of this remarkable fact on the lattice 4-torus for SU(3) using advanced techniques for controlling lattice discretization errors, extending earlier work of De Forcrand et. al. for SU(2). We identify three distinct signals for the instability of |Q|=1 configurations, and show that these manifest themselves early in the cooling process, long before the would-be instanton has shrunk to a size comparable to the lattice discretization threshold. These signals do not appear for our |Q|=2 configurations. This indicates that these signals reflect the truly global nature of the instability, rather than local discretization effects. Monte-Carlo generated SU(3) gauge field configurations are cooled to the self-dual limit using an O(a^4)-improved gauge action chosen to have small but positive O(a^6) errors. This choice prevents lattice discretization errors from destroying instantons provided their size exceeds the dislocation threshold of the cooling algorithm. Lattice discretization errors are evaluated by comparing the O(a^4)-improved gauge-field action with an O(a^4)-improved action constructed from the square of an O(a^4)-improved lattice field-strength tensor, thus having different O(a^6) discretization errors. The number of action-density peaks, the instanton size and the topological charge of configurations is monitored. We observe a fluctuation in the total topological charge of |Q|=1 configurations, and demonstrate that the onset of this unusual behavior corresponds with the disappearance of multiple-peaks in the action density. At the same time discretization errors are minimal.Comment: 12 pages, 9 figures, submitted to Phys. Rev.

    Quantum gravity and the standard model

    Full text link
    We show that a class of background independent models of quantum spacetime have local excitations that can be mapped to the first generation fermions of the standard model of particle physics. These states propagate coherently as they can be shown to be noiseless subsystems of the microscopic quantum dynamics. These are identified in terms of certain patterns of braiding of graphs, thus giving a quantum gravitational foundation for the topological preon model proposed by one of us. These results apply to a large class of theories in which the Hilbert space has a basis of states given by ribbon graphs embedded in a three-dimensional manifold up to diffeomorphisms, and the dynamics is given by local moves on the graphs, such as arise in the representation theory of quantum groups. For such models, matter appears to be already included in the microscopic kinematics and dynamics.Comment: 12 pages, 21 figures, improved presentation, results unchange
    corecore